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A B S T R AC T

Braided cords represent the flow of time itself. They converge and take
shape. They twist, tangle, sometimes unravel, break, and then connect
again. Musubi - knotting. That’s time.

(From "Your name")

The following is an attempt to provide a more mathematically oriented introduction
to the lecture course GR 2 of the physics master at the university of Vienna. We aim
to provide the same content as the original lecture, however, we will try to go about
these concepts in a more purely mathematical manner first. In the beginning we will
fully avoid the use of the usual physics notation and only slowly introduce it, as the said
notational conventions are what makes the life of a mathematician truly hard whenever
enrolled in a physics course. We also provide more details on some of the mathematical
contents as in the original course, that is, we introduce more abstract nonsense. Those
passages are highlighted by (?) and are not at all relevant for the material covered in
the lecture course. However, for the mathematically inclined those sections might be
interesting. As references we used both [1] and [2] extensively, and we sometimes even
shamelessly copied some parts.
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1 I N T RO D U C T I O N T O T E N S O R C A L C U L U S A N D M A N I F O L D S

1.1 Manifolds

We will start by first introducing the objects which will lay the foundation for our theory
of relativity.

Definition 1. A d-dimensional topological manifold M is a second countable, Haus-
dorff topological space, which is locally Euclidean in the sense that each point p ∈M
has an open neighborhood which is homeomorphic to an open subset of Rd . Moreover,
we introduce the following concepts:

1. A chart on a topological manifold M is a pair (U ,φ ), where U ⊂M is an open
subset and φ is a homeomorphism from U onto an open subset φ (U ) ⊂Rd .

2. For k ∈N∪ {∞}, two charts (Uλ ,φλ ), (Uµ ,φµ) are called C k-compatible if
Uλ µ := Uλ ∩Uµ is either empty or φλ µ := φλ ◦ φ−1

µ is a C k-diffeomorphism
between the open subsets φµ(Uλ µ) and φλ (Uλ µ).

3. A collection of such pairs {(Uλ ,φλ ) | λ ∈ Λ} of mutually C k-compatible charts
on M such that M =

⋃
Uλ is called a C k-atlas on M .

It is quite non-trivial to prove that the dimension of a manifold M is well defined. In
fact, the common proof for this fact relies on homology theory from algebraic topology.
For our purposes it is very much sufficient to always assume C ∞-compatibility.

The main point of defining all this madness is that it allows us to talk about differentiable
functions and maps, and therefore we may do analysis:

Definition 2. Let M and N be smooth manifolds and let f : M →N be a map.

• f is called smooth if and only if for any point p ∈M , there are charts (U ,φ ) for
M and (V ,ζ ) for N such that p ∈U , f (U ) ⊂ V and such that

ζ ◦ f ◦φ
−1 : φ (U )→Rd (1)

is smooth in the usual sense.

• f is called a diffeomorphism if and only if f is smooth and bijective and the
inverse f−1 : N →M is smooth, too.

1.2 Scalar Functions

A scalar f on a manifold M is simply defined to be a (real-valued) function on M , that
is f : M →R, which is assumed to be as differentiable as the differentiable structure of
the manifold allows. The set of scalars, or put differently, the set of smooth real-valued
functions on M can be denoted by C ∞(M ,R). From the definition of smoothness it
follows readily that f : M →R is smooth if and only if for each p ∈M there is some
chart (U ,φ ) with p ∈U such that f ◦φ−1 : φ (U )→R is smooth.
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1.3 Tangent vectors and Tangent spaces in a point for abstract manifolds (?)

For a fixed point p ∈M we want to define the tangent space TpM at the point p. In
order to do so in the setting of abstract manifolds we need to go via the concept of
germs at first.

Definition 3. Let M be a smooth manifold, and let p∈M be a point and let C ∞
p (M ,R)

be the algebra of germs of smooth functions at p. Then we define the tangent space
TpM to M at the point p by

TpM :=
{

Xp ∈L (C ∞
p (M ,R),R)

∣∣Xp is a derivation at p
}

. (2)

To assume Xp be a derivation at p means that we have the Leibniz rule

Xp( f g) = Xp( f )g(p)+ f (p)Xp(g) (3)

More details can be found in [1].

Of course it is evident from the definition that TpM is a vector space.

Theorem 1. Let M and N be smooth manifolds and let f : M →N be a smooth
map. For a point p ∈M let f ∗p : C ∞

f (p)(N,R)→ C ∞
p (M ,R) be given by [g] 7→ [g◦ f ]

(so precomposition with f and then taking the class of germs at p of which g◦ f is a
member of).

1. The map

Tp f : TpM → Tf (p)N Xp 7→ Xp ◦ f ∗p (4)

is a well defined linear map.

2. If f is a diffeomorphism or the embedding of an open subset, then Tp f is a linear
isomorphism for each p ∈M . In particular, if M has dimension d, then for each
p ∈M , the vector space TpM has dimension d.

3. If g : N →P is another smooth map between manifolds, then we get the chain
rule

Tp(g◦ f ) = Tf (p)g◦Tp f (5)

Proving this is rather easy, so we will skip it.

1.4 Tangent vectors in local charts (?)

We can now try to interpret tangent vectors in local charts. For a local chart (U ,φ ) for
M and p ∈U we know that Tpφ : TpM → Tφ (p)φ (U ) ∼= Rd is a linear isomorphism.
We can now define the tangent vectors ∂

∂φ i |p by means of

∂

∂φ i |p = Tφ (p)φ
−1(ei) (6)
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where ei ∈ Tφ (p)φ (U ) is the derivation ei( f ) := ∂i f (φ (p)) for f ∈ C ∞

φ (p)(φ (U ),R).

Note that the set {ei}d
i=1 forms a basis for Tφ (p)φ (U ). We shall now relate this picture

for different charts (Uλ ,φλ ), (Uµ ,φµ). We then know that we can write

φλ = φλ µ ◦φµ (7)

on Uλ µ and by taking the tangent map at p we obtain

Tpφλ = Tp(φλ µ ◦φµ) = Tφµ (p)φλ µ ◦Tpφµ (8)

and we can easily convince ourselves that Tφµ (p)φλ µ is simply the ordinary derivative
Dφλ µ(φµ(p)) (if we develop the linear map Tφµ (p)φλ µ in the basis {ei}). Alternatively,
we can rewrite the relation (8) as

(Tpφµ)
−1 = (Tpφλ )

−1 ◦Dφλ µ(φµ(p)) (9)

and therefore

∂

∂φ i
µ

|p = (Tpφµ)
−1(ei) = (Tpφλ )

−1 ◦Dφλ µ(φµ(p))(ei) (10)

= ∂iφ
j

λ µ
(φµ(p))

∂

∂φ
j

λ

|p (11)

In particular, if we are given a tangent vector Xp ∈ TpM , then we can write

Xp = ci
λ

∂

∂φ i
λ

|p (12)

for ci
λ
∈R (note that the set { ∂

∂φ i
λ

|p} forms a basis for TpM ) and therefore

Xp = ci
λ

∂iφ
j

µλ
(φλ (p))

∂

∂φ
j

µ

|p (13)

Thus

c j
µ = ci

λ
∂iφ

j
µλ

(φλ (p)) (14)

1.5 Tangent bundle and tangent maps (?)

If we are given a manifold M we could consider the disjoint union

TM :=
⋃

TpM (15)

and ask ourselves if we could turn this into a smooth manifold too. This is indeed the
case and we refer to TM as the tangent bundle of M .
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Theorem 2. For any smooth manifold M the space TM can be naturally made into a
smooth manifold such that the projection p : TM →M is smooth. In particular, charts
for TM are of the form (p−1(U ),T φ ) where T φ : p−1(U )→ φ (U )×Rd is given
by

T φ (Xp) := (φ (p),Tpφ (Xp)) (16)

Proposition 1. For a smooth map f : M →N the tangent map T f : TM → TN
given by T f (Xp) := Tp f (xp) is smooth. In particular, if g : N →P is another smooth
map between manifolds, we have the chain rule

T (g◦ f ) = T g◦T f (17)

1.6 Vector fields

1.6.1 A mathy perspective (?)

Usually if one goes about vector fields in a very mathematical manner, we could define
vector fields as smooth maps ξ : M → TM such that p◦ξ = id, where p : TM →M
is the canonical projection. Note that p ◦ ξ = id simply means ξ (p) ∈ TpM for all
p ∈M . The set of vector fields on M will be denoted by X (M ). With this definition
in mind we can prove:

Proposition 2. Let M be a smooth manifold of dimension d with tangent bundle
p : TM →M .

• For a chart (U ,φ ) for M the maps ∂

∂φ i : U → TM define local smooth vector
fields on U .

• For a fixed vector field ξ ∈X (M ) and a chart (U ,φ ) there are smooth functions
ξ i : U →R such that ξ |U = ξ i ∂

∂φ i .

• Fix two charts (Uλ ,φλ ), (Uµ ,φµ), then the coordinate change for vector fields
reads as

ξ
i
λ
(p) = ∂ jφ

i
λ µ

(φµ(p))ξ j
µ(p) (18)

A most important result is then the following:

Theorem 3. Let M be a smooth manifold and let ξ ∈X (M ).

1. Let (U ,φ ) be a chart for M and expand ξ |U = ξ i ∂

∂φ i as seen before. For f ∈
C ∞(M ,R), the local coordinate representation ξ ( f )◦φ−1 (where ξ ( f )(p) :=
ξ (p)( f )) is given by

ξ ( f ) ◦φ
−1 = (ξ i ◦φ

−1)∂i( f ◦φ
−1) (19)

In particular, for any f ∈ C ∞(M ,R) the function ξ ( f ) is smooth.
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2. Moreover, ξ induces a linear map C ∞(M ,R)→ C ∞(M ,R), which is a deriva-
tion in the sense that ξ ( f g) = ξ ( f )g+ f ξ (g) for all f ,g ∈ C ∞(M ,R).

3. Conversely, if D : C ∞(M ,R) → C ∞(M ,R) is a derivation, then there is a
unique vector field ξ ∈X (M ) such that ξ ( f ) = D( f ) for all f ∈ C∞(M ,R).
Put differently, we have a linear isomorphism{

Derivations C ∞(M ,R)→ C ∞(M ,R)

}
∼= X (M ) (20)

1.6.2 From the physics point of view

The notion of a vector field finds its roots in the notion of tangents to a curve, say R⊃
I 3 s 7→ γ(s) ∈M . If we use local coordinates, say φ i, or if we would like to use more
physicsy notation local coordinates xi, then we can write γ(s) as (γ1(s), ...,γd(s)) :=
x◦ γ(s), the tangent to that curve at the point γ(s) is defined as the set of numbers

(γ̇1(s), ..., γ̇d(s)) (21)

This physics notation is a bit irritating in my opinion, as it is easily misunderstood.
However, we will stick to this notation more and more, as this is after all a physics
lecture. But before using that notation too heavily, we will do it in a most precise
fashion first. So consider a curve γ : I→M and fix charts (Uλ ,φλ ), (Uµ ,φµ) such that
γ(I) ⊂Uλ ∩Uµ . Now we can look at the equation

φλ ◦ γ(s) = φλ µ ◦ (φµ ◦ γ)(s) (22)

and differentiate both sides with respect to s to obtain

d
ds

(φλ ◦ γ)(s) = Dφλ µ(φµ(γ(s)))
d
ds

(φµ ◦ γ)(s) = ∂ jφλ µ(φµ(γ(s)))γ̇
j
µ(s) ∈Rd (23)

with γ
j
µ = (φµ ◦ γ) j and we have used the summation convention for the index j. What

we did in (22) is referred to as a change of coordinates and in physics notation one
usually writes xi → y j(xi), where x = (xi) = φµ and y = (y j) = φλ . So what we
have calculated is that in these new coordinates y j the curve γ is represented by the
functions y j(γµ(s)) := φ

j
λ µ
◦ (φµ ◦ γ)(s) = φ

j
λ
◦ γ(s). Thus again in the notation of

physics equation (23) reads as

dy j

ds
=

∂y j

∂xi γ̇
i (24)

where ∂yi

∂x j := ∂ jφ
i
λ µ

and γ i = (φµ ◦ γ)i. Equation (24) defines what is called the trans-
formation law of vectors: Given a point x = (xi) and a set of numbers X = (X i), the
set (X i) is called a vector at x if, under a change of coordinates xi→ y j(xi) the set (X i)
transforms as

X i(x)→ X j
(y(x)) =

∂y j

∂xi (x)X
i(x) (25)
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or equivalently

X j
(y) =

∂y j

∂xi (x(y))X
i(x(y)) (26)

A convenient way of representing vectors is using first order homogenous differential
operators. So consider the linear differential operator

X := X i ∂

∂i
(27)

where i runs from 1 to d and Xi are smooth scalars which transform using the transfor-
mation rule. Now if f ∈ C ∞(M ,R) we have

X( f )(x) = X i(x)
∂ f (x)

∂xi (28)

and thus

X( f )(x) = X i(x)
∂ f (x)

∂xi = X i(x)
∂ f (y(x))

∂xi = X i(x)
∂ f (y(x))

∂yk
∂yk

∂xi (x) (29)

= Xk
(y(x))

∂ f (y(x))
∂yk =

(
Xk ∂ f

∂yk

)
(y(x)) (30)

As we have seen in the maths section on vector fields, there is a linear isomorphism
between derivations on C ∞(M ,R) and the space of vector fields X (M ). Thus it is
perfectly fine to define a vector field by means of derivation. The Lie bracket of two
vector fields ξ ,η ∈X (M ) is defined by its action

[ξ ,η ]( f ) := ξ (η( f ))−η(ξ ( f )) (31)

It is easily checked that this yields a derivation and thus defines a vector field [ξ ,η ] ∈
X (M ).

1.7 Why the heck would we define vector fields as derivations? (?)

If one usually stumbles upon the term of a vector field in some physics literature, the
given definition will usually be that a vector field V : Rd →Rd is nothing more than a
smooth function, that is, V ∈ C ∞(Rd ,Rd). However, in our more general definition,
a vector field X ∈X (M ) (for some manifold M ) can be interpreted as a derivation
on the space C ∞(M ,R), that is, a X is a linear map C ∞(M ,R)→ C ∞(M ,R) which
satisfies the Leibniz rule:

∀ f ,g ∈ C ∞(M ,R) : X( f g) = X( f )g+ f X(g) (32)

So how do these two pictures of vector fields relate? In order to answer this, let
V ∈ C ∞(Rd ,Rd) be a vector field and define the map Ṽ : C ∞(Rd ,R)→ C ∞(Rd ,R)
by

Ṽ ( f )(x) := D f (x)(V (x)) (33)
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for all f ∈ C ∞(Rd ,R) and for all x ∈Rd . Certainly Ṽ is a linear map and of course by
the usual product rule we have

Ṽ ( f g) = Ṽ ( f )g+ f Ṽ (g) (34)

which means that Ṽ is a derivation. This means that every vector field V naturally
induces a derivation Ṽ . Even more is true:

Theorem 4. The space of vector fields C ∞(Rd ,Rd) is linearly isomorphic to the space
of derivations D on C ∞(Rd ,R). In particular, the isomorphism is given by

ζ : C ∞(Rd ,Rd)→D V 7→ Ṽ (35)

Proof. We have already established that ζ is a well defined linear map C ∞(Rd ,R)→
D , so all that is left to show is injectivity and surjectivity. So let us assume that
ζ (V ) = ζ (W ). Then

ζ (V ) = ζ (W ) ⇐⇒ Ṽ = W̃ ⇐⇒ ∀ f : ∀x : D f (x)(V (x)) = D f (x)(W (x)) (36)
take f=xi

=⇒ ∀x : ∀i : V i(x) =W i(x) ⇐⇒ V =W (37)

So ζ is injective. So now let φ ∈D be a derivation. We have to find a vector field V
such that Ṽ = φ . First note that if 1 ∈ C ∞(Rd ,R) represents the constant 1-function,
then by the Leibniz rule for derivations we have

φ (1) = φ (1 ·1) = φ (1) ·1+ 1 ·φ (1) = 2φ (1) (38)

So φ (1) = 0. In particular, by linearity φ (λ ) = 0 for all λ ∈ Rd . Now let f ∈
C ∞(Rd ,R) and x ∈Rd be arbitrary. Then by the fundamental theorem of calculus we
have

f (y) = f (x)+
∫ 1

0

d
dt

[
f (x+ t(y− x))

]
dt (39)

= f (x)+∑
i
(yi− xi)

∫ 1

0
∂i f (x+ t(y− x))dt︸ ︷︷ ︸

hi(y)

(40)

But then

φ ( f ) = φ ( f (x)︸︷︷︸
∈R

)

︸ ︷︷ ︸
=0

+∑
i

{
φ (yi− xi)︸ ︷︷ ︸

=φ (yi)

hi +(yi− xi)φ (hi)
}

(41)

and therefore

φ ( f )(x) = ∑
i

{
φ (yi)(x) hi(x)︸︷︷︸

=∂i f (x)

+(xi− xi)φ (hi)(x)
}
= ∑

i
∂i f (x)φ (yi)(x) (42)

So if we then set V i := φ (yi) ∈ C ∞(Rd ,R), then the vector field V with component
functions V i satisfies by equation (42)

φ = Ṽ = ζ (V ) (43)

that is, ζ is surjective and thus an isomorphism.
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1.8 Covectors

At any given point p ∈M the set of covectors is defined to be the dual space of TpM ,
that is, T ∗p (M ). The collection of all cotangent spaces T ∗p M

T ∗M :=
⋃

T ∗p (M ) (44)

is called the cotangent bundle of M and it can be shown that this yields a smooth
manifold in the following way: We again have a canonical projection p : T ∗M →M
and charts for T ∗M are of the form (p−1(U ),T ∗φ ) with

T ∗φ : p−1(U )→ φ (U )×Rd∗ T ∗φ (ωp) := (φ (p), ((Tpφ )−1)∗(ωp))︸ ︷︷ ︸
dual map of (Tpφ )−1

(45)

In mathematics one usually defines covectors as smooth maps ω : M → T ∗M which
satisfy p◦ω = id. However, we will not go into this further and look at covectors from
the physics point of view. Here we are a little bit lazy and we will immediately define
the basic objects which are the coordinate differentials dxi, defined by its action on
vector fields:

dxi(X j ∂

∂x j ) := X i (46)

Equivalently, we could write this as

dxi(
∂

∂x j ) = δ
i
j (47)

The set {dxi} forms a basis for the space of (local) covectors Ω(U ): Indeed, if
ω ∈Ω(U ), then for X ∈X (U )

ω(X) = ω(X i ∂

∂xi ) = X i
ω(

∂

∂xi )︸ ︷︷ ︸
:=ωi

= ωidxi(X) (48)

that is

ω = ωidxi (49)

In particular, for ω ∈X (M ) we have ω|U = ωidxi. In particular, if we go for the
same spiel of coordinates as before we easily see that

ω = ω
λ
i

∂

∂φ i
λ

= ω
λ
i (∂iφ

j
λ µ
◦φµ)

∂

∂φ
j

µ

(50)

that is

ω
µ

j = ω
λ
i (∂iφ

j
λ µ
◦φµ) (51)
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So in the physics notation this reads as

ω j = ωi
∂yi

∂x j (52)

Now for f ∈ C ∞(M ,R), p ∈M and Xp ∈ TpM we may define

d f (p)(Xp) := Tp f (Xp) ∈ Tf (p)R
∼= R (53)

We observe that d f (ξ ) = ξ ( f ) for all ξ ∈X (M ), and from that one can deduce that
d f ∈Ω(M ). From a physicist’s perspective one simply sets

d f =
∂ f
∂xi dxi (54)

Last but not least, since ∂

∂φ i
µ

= ∂iφ
j

µλ

∂

∂φ
j

λ

we have dφ r
λ
( ∂

∂φ i
µ

) = ∂iφ
r
µλ

and thus

dφ
r
µ = ∂iφ

r
µλ

dφ
i
λ

(55)

or in the notation of physics

dy j =
∂y j

∂xi dxi (56)

1.9 Bilinear maps and 2-covariant tensors

Let g : X (M )×X (M )→R be bilinear. Then

g(X ,Y ) = g(X i
∂i,Y j

∂ j) = X iY jg(∂i,∂ j) = gi jdxi(X)dx j(Y ) (57)

where ∂i := ∂

∂xi for a chart (U ,x). We then say that g is a covariant tensor of valence
two. A symmetric bilinear tensor field is said to be nondegenerate if det(gi j) has no
zeros. Equivalently,

∀Y : g(X ,Y ) = 0 =⇒ X = 0 (58)

By Sylvester’s inertia theorem, if g is a symmetric bilinear form, there exists a basis of
covectors {ϕ j} such that

∀X ,Y : g(X ,Y ) = −
s

∑
j=1

ϕ
j(X)ϕ j(Y )+

r+s

∑
j=s+1

ϕ
j(X)ϕ j(Y ) (59)

The pair (s, r) is called the signature of g. If r = d, in dimension d, then g is said to be a
Riemannian metric tensor. Thus, a Riemannian metric on a manifold M is a field of
symmetric nondegenerate bilinear forms with signature (0,dimM ).
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1.10 Tensor products

1.10.1 A mathy perspective (?)

Definition 4. An (l
k)-tensor field on a smooth manifold M is a map T that associates to

each p∈M and element Tp ∈
⊗k T ∗p M ⊗

⊗l TpM such that for all ξ1, ...,ξk ∈X (M )

and for all ω1, ...,ω l ∈Ω(M ) the function T (ξ1, ...,ξk,ω1, ...,ωl) : M →R is smooth.
Note that we can interpret the space

⊗k T ∗p M ⊗
⊗l TpM as the space of (k+ l)-linear

maps TpM × ...×TpM︸ ︷︷ ︸
k times

×T ∗p M × ...×T ∗p M︸ ︷︷ ︸
l times

→R. The space of all such tensor fields

will be denoted by T l
k (M ).

Given T ∈T l
k (M ) and a chart (U ,φ ) fix some (k+ l)-tuple (i1, ..., ik, j1, ..., jl) of

integers in {1, ...,n}, then we get a smooth function

T j1... jl
i1...ik

:= T
(

∂

∂φ i1
, ...,

∂

∂φ ik
,dφ

j1 , ...,dφ
jl

)
∈ C ∞(U ,R) (60)

On the other hand, we obtain a tensor field

dφ
i1⊗ ...⊗dφ

ik⊗ ∂

∂φ j1
⊗ ...⊗ ∂

∂φ jl
∈T l

k (U ) (61)

given by

dφ
i1⊗ ...⊗dφ

ik⊗ ∂

∂φ j1
⊗ ...⊗ ∂

∂φ jl

(
∂

∂φ r1
, ...,

∂

∂φ rk
,dφ

s1 , ...,dφ
sl

)
:= δ

i1...ik
r1...rk

δ
s1...sl
j1... jl (62)

By construction we then have

T |U = T j1... jl
i1...ik dφ

i1⊗ ...⊗dφ
ik⊗ ∂

∂φ j1
⊗ ...⊗ ∂

∂φ jl
(63)

We could then go on about changing coordinates, or that we could prove that
⊗k TM ⊗⊗l T ∗M can also be turned into a smooth manifold. For details on this we refer to [1].

Something which is also quite interesting is the following:

Theorem 5. Let Φ : X (M )k×Ω(M )l → C ∞(M ,R) be (k+ l)-linear. Then Φ is
induced by a tensor field T ∈ T l

k (M ) if and only if Φ is linear over C ∞(M ,R) in
each variable.

1.10.2 From the perspective of physics

If we are given covector fields ϕ ,θ ∈Ω(M ), then we can clearly define a bilinear map
using the formula

(ϕ⊗θ )(X ,Y ) := ϕ(X)θ (Y ) (64)
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Note that this definition is somehow fueled or motivated by theorem 5. For example

(dxi⊗dx j)(X ,Y ) = X iY j (65)

Using this notation we have that if g is a bilinear form on X (M ), then

g = gi jdxi⊗dx j (66)

with gi j = g( ∂

∂xi , ∂

∂x j ). Next we will define the symmetric product

dxidx j :=
1
2
(dxi⊗dx j + dx j⊗dxi) (67)

and we immediately note that if the bilinear form g is symmetric, then

g = gi jdxidx j (68)

This formula allows one to read-off, without even having to think, the transformation
law of a metric tensor under coordinate changes:

gi j(x) dxi︸︷︷︸
∂xi

∂yk dyk

dx j︸︷︷︸
∂x j

∂yl dyl

= gi j(x)
∂xi

∂yk
∂x j

∂yl︸ ︷︷ ︸
gi j

dykdyl (69)

A most important notion of duality is that we may apply vector fields to covector fields.
Indeed, if ϕ ∈Ω(M ) is a covector field and X ∈X (M ) is some fixed vector field,
then we may define

X(ϕ) := ϕ(X) ∈ C ∞(M ,R) (70)

In particular, if we write X = X j ∂

∂x j and ϕ = ϕidxi for some chart (U ,x), then (locally)
we have

X(ϕ) = ϕ(X) = ϕidxi(X j ∂

∂x j ) = ϕiX i (71)

We will now stick to the convention ∂i := ∂

∂xi for a local chart (U ,x). It then also makes
sense to define ∂i⊗∂ j as the clearly bilinear map

∂i⊗∂ j(ϕ ,θ ) := ϕiθ j (72)

Putting everything together, we may define general tensor fields of valence (k,l) by first
fixing a (k+ l)-tuple (i1, ..., ik, j1, ..., jl) of natural numbers in {1, ...,d} (where d is the
dimension of our manifold M ) and then define local basis tensor fields by(

dxi1⊗ ...⊗dxik⊗∂ j1⊗ ...⊗∂ jl
)
(X1, ...,Xk,ϕ1, ...,ϕ l) := ∏

r
X ir

r ∏
s

ϕ
s
js (73)

where X1, ...,Xk ∈X (M ),ϕ1, ...,ϕ l ∈Ω(M ) are written as Xr = X l
r ∂l ,ϕs = ϕs

t dxt in
local coordinates. A general tensor field T of valence (k, l) is then given by (locally)

T = T j1,..., jl
i1,...,ik︸ ︷︷ ︸

∈C ∞(U ,R)

(
dxi1⊗ ...⊗dxik⊗∂ j1⊗ ...⊗∂ jl

)
(74)
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A coordinate change for such tensor would then read as

T = T j1... jl
i1...ik

(
dxi1︸︷︷︸

∂xi1

∂y
si1

dy
si1

⊗...⊗dxik⊗ ∂x j1︸︷︷︸
∂y

m j1

∂x j1
∂ym j1

⊗...⊗∂x jl

)
(75)

= T j1... jl
i1...ik ∏

v

∂xiv

∂ysiv
∏

u

∂ym ju

∂x ju︸ ︷︷ ︸
T

m j1
...m jl

si1
...sik

dysi1 ⊗ ...⊗dysik ⊗∂ym j1
⊗ ...⊗∂ym jl

(76)

If we are given two tensors T and S then we are certainly also able to define a tensor
field T ⊗S in the obvious way, that is,

(T ⊗S)(ψ , ...,ϕ , ...) := T (ψ , ...)S(ϕ , ...) (77)

1.11 Contractions

The simplest example of a contraction applies to tensor fields , say S j
i dxi⊗∂ j, with one

index up and one index down. We then simply perform the sum Si
i which is of course

a scalar since Sl
kdyk⊗ ∂yl = Sl

k
∂yk

∂xs
∂xr

∂yl︸ ︷︷ ︸
Ss

r

dxs⊗ ∂xr and therefore Sr
r = Sl

k
∂yk

∂xr
∂xr

∂yl︸ ︷︷ ︸
δ k

l

= Sr
r.

More generally, we may define the map Cs
r as a map which takes tensor fields T =

T j1... jl
i1...ik

(
dxi1⊗ ...⊗dxik⊗∂ j1⊗ ...⊗∂ jl

)
and gives a new resulting tensor field given by

Cs
r(T ) = T j1...r... jl

i1...s...ik dxi1⊗ ...⊗ d̂xr⊗ ...⊗dxik⊗∂ j1⊗ ...⊗ ∂̂s⊗ ...⊗∂ jl (78)

where putting a hat over a symbol means omission. Thus Cs
r takes the sth factor in the

vector field part, inserts it into the rth factor of the covector field part and multiplies
the resulting function with the tensor product of the remaining elements (in the original
order).

1.12 Raising and Lowering Indices

Let g be a symmetric two-covariant tensor field, that is, for each p ∈M gp : TpM ×
TpM →R is bilinear and symmetric. The symbol g will be reserved to nondegenerate
symmetric two-covariant tensor fields. We will sometimes write gp for g(p) when
referencing p. Sylvester’s inertia theorem tells us that at each p ∈M the map g will
have a well-defined signature; clearly this signature will be point-independent on a
connected manifold when g is nondegenerate. A pair (M ,g) is said to be a Riemannian
manifold when the signature of g is (0,dimM ); equivalently, when g is a positive
definite bilinear form on every product TpM × TpM . A pair (M ,g) is said to be
a Lorentzian manifold when the signature of g is (1,dimM − 1). One talks about
pseudo-Riemannian metrics and manifolds whatever the signature of g, as long as g is
nondegenerate. Any pseudo-Riemannian metric g defines an isomorphism

g : TpM → T ∗p M X 7→ g(X , .) (79)
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which in local coordinates reads as

g(X , .) = gi jX i︸︷︷︸
X j

dx j (80)

This last equality defines X j, the vector X j with the index j lowered. The inverse of this
operation will be denoted by # and is called raising of indices. In order to get to # we
first take some ϕ ∈ T ∗p M , then since g is an isomorphism there exists X ∈ TpM such
that g(X) = ϕ . Thus

ϕ
# = (g(X))# = (gi jX idx j)# = gi jX idx j# (81)

Hence, in order to recover X from ϕ we may simply define dx j# := g jl∂ j, which defines
# locally (where g jl is the inverse to g jl). We may then also define a scalar product g#

on T ∗p M by

g#(ϕ ,ν) := g(ϕ#,ν#) (82)

In other words, g#(dxi,dx j) = gi j. Now the gradient ∇ f of a function f is a vector field
obtained by raising the indices on the differential d f , that is, ∇ f locally looks like

∇ f := d f # =

(
∂ f
∂xi dxi

)#

=
∂ f
∂xi g

il
∂l (83)

1.12.1 The musical isomorphism (?)

In any Hilbert space V with scalar product g we have an identification of vectors in V
with covectors in V ∗ via

V 3 v 7→ 〈. | v〉 ∈V ∗ (84)

This construction extends to Semi-Riemannian manifolds providing an identification of
vector fields and one forms.

Theorem 6 (Musical Isomorphism). Let (M ,g) be a semi-Riemannian manifold. For
any X ∈X (M ) define X℘∈Ω1(M ) by

X℘ := g(X , .) (85)

Then the mapping Ψ : X 7→X℘ is a C ∞(M ,R)-linear isomorphism X (M )→Ω1(M ).

Proof. See [3]

Hence in semi-Riemannian geometry we can always identify vectors and vector fields
with covectors and one forms, respectively: X and X℘ contain the same information.
One also writes ϕ# = Ψ−1(ϕ) and this notation is the source of the name ‘musical
isomorphism’.
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1.13 Covariant derivatives

When dealing with Rd we have at our disposal the canonical trivialization {∂i} of T Rd

(a globally defined set of vector fields which, at every point, form a basis of the tangent
space), together with its dual trivialization {dxi} of T ∗Rd . We may expand a tensor
field T of valence (k, l) in terms of those bases

T = T i1...ik
j1... jl ∂i1⊗ ...⊗∂ik⊗dx j1⊗dx jl (86)

If we then differentiate each component T i1...ik
j1... jl separately we get

X(T ) := X i
∂xi(T i1...ik

j1... jl )∂i1⊗ ...⊗∂ik⊗dx j1⊗dx jl (87)

The resulting object does, however, not behave as a tensor under coordinate transforma-
tions. Therefore we must think of a differentiate notion of differentiation which must be
a map which to a tensor field T and a vector field X assigns a tensor field of the same
type as T , denoted by ∇X T , with the following properties:

1. ∇X T is linear concerning addition with respect to both X and T :

∇X+Y T = ∇X T +∇Y T ∇X (T + S) = ∇X T +∇X S (88)

2. ∇X T is linear with respect to multiplication of X by functions f ∈ C ∞(M ,R) :

∇ f X T = f ∇X T (89)

3. ∇X T satisfies the Leibniz rule:

∇X ( f T ) = f ∇X T +X( f )T (90)

for smooth f ∈ C ∞(M ,R).

1.13.1 Covariant derivative on functions

The canonical covariant derivative on functions f ∈ C ∞(M ,R) is defined by

∇X ( f ) = X( f ) (91)

for a vector field X ∈X (M ). It is clear that this map satisfies all the properties of a
covariant derivative.

1.13.2 Covariant derivative on vector fields

Let us, at first, not worry about the existence of covariant derivatives for vector fields
and simply work from there. Next we assume that we are working on a subset U ⊂M
over which we have a trivialization of the tangent bundle TU ⊂ TM . In other words,
for 1≤ a≤ d there exist vector fields ea ∈X (M ) such that at every point p ∈M the
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fields ea|p ∈ TpU = TpM form a basis of TpM . Of course such trivializations do exist
in general, say on charts (U ,φ ) with el =

∂

∂φ l . However, trivializations do not exist
globally in general. Let θ a denote the dual trivializations of T ∗M , that is,

θ
a(eb) = δ

a
b (92)

Given a covariant derivative ∇ on vector fields we set

Γc
ab := θ

c(∇ebea) ⇐⇒ ∇ebea = Γc
abec (93)

The locally defined functions Γc
bc are called connection coefficients. If {ea} is the

coordinate basis {∂µ} we shall write

Γµ

ϕν = dxµ(∇∂ν
∂ϕ) (94)

In this case the connection coefficients will be called the Christoffel symbols. Given
vector fields X ,Y and using the Leibniz rule we find

∇XY = ∇X (Y aea) = ∇X (Y a)ea +Y a
∇X ea = X(Y a)ea +Y aXb

∇ebea (95)

= X(Y c)ec +Y aXbΓc
abec =

[
X(Y c)+Y aXbΓc

ab
]
ec (96)

We will often make use of the notation ∇a := ∇ea . The one-covariant, one-contravariant
tensor field ∇Y is defined as

∇Y := (∇aY b)︸ ︷︷ ︸
θ b(∇eaY )

θ
a⊗ eb (97)

Hence

∇aY b = θ
b(∇aY ) = θ

b(∇a(Y cec)) = θ
b(ea(Y c)ec +Y c

∇aec) (98)

= ea(Y b)+Y c
θ

b(Γd
caed) = ea(Y b)+Y cΓb

ca (99)

In particular, we note that

(∇Y )(X , .) = ∇XY (100)

1.13.3 Transformation Law

We shall now enquire about the transformation law of the connection coefficients Γi
jk

with respect to a coordinate basis ∂xi . Let us denote by Γ̂i
jk the connection coefficients

with respect to some other coordinates y.

Γi
jk = dxi(∇∂xk

∂x j) = dxi(∇∂xk

∂yl

∂x j
∂

∂yl ) =
∂xi

∂ys dys(∇∂xk

∂yl

∂x j
∂

∂yl )

=
∂xi

∂ys dys
(

∂ 2yl

∂x j∂xk
∂

∂yl +
∂yl

∂x j ∇ ∂

∂xk

∂

∂yl

)
=

∂xi

∂ys dys
(

∂ 2yl

∂x j∂xk
∂

∂yl +
∂yl

∂x j
∂yr

∂xk ∇ ∂

∂yr

∂

∂yl

)
=

∂xi

∂ys dys
(

∂ 2yl

∂x j∂xk
∂

∂yl +
∂yl

∂x j
∂yr

∂xk Γ̂c
lr

∂

∂yc

)
=

∂xi

∂ys
∂ 2ys

∂x j∂xk︸ ︷︷ ︸
nonhomogenous term

+
∂xi

∂ys
∂yl

∂x j
∂yr

∂xk Γ̂s
lr
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Thus, the Γi
jk’s do not form a tensor; instead the transform as a tensor plus a nonho-

mogenous term containing second derivatives.

1.13.4 Torsion

Because the inhomogenous term in the previous transformation formula for the connec-
tion coefficients Γi

jk is symmetric in k and j, it immediately follows that

T i
jk := Γi

k j−Γi
jk (101)

does transform as a tensor, called the torsion tensor of ∇. There is also an index-free
definition of torsion, which proceeds as follows: Let ∇ be some covariant vector field
defined for vector fields, the torsion tensor T is defined by the formula

T (X ,Y ) := ∇XY −∇Y X− [X ,Y ] (102)

We obviously have T (X ,Y ) = −T (Y ,X). Let us check that this defines a tensor field.
Multilinearity with respect to addition is obvious. To check what happens under
multiplication by functions, in view of the antisymmetry of T , it is sufficient to do the
calculation for the first slot of T . We then have

T ( f X ,Y ) = ∇ f XY −∇Y f X− [ f X ,Y ] = f (∇XY −∇Y X)−Y ( f )∇Y X− [ f X ,Y ](103)

In order to work out the last term we compute, for any smooth ϕ ∈ C ∞(M ,R)

[ f X ,Y ](ϕ) = f X(Y (ϕ))− Y ( f X(ϕ))︸ ︷︷ ︸
Y ( f )X(ϕ)+ fY (X(ϕ))

=

(
f [X ,Y ]−Y ( f )X

)
(ϕ) (104)

which shows T ( f X ,Y ) = f T (X ,Y ). In a coordinate basis {∂µ} we have [∂µ ,∂ν ] = 0
for all µ ,ν and thus one finds

T (∂µ ,∂ν) = ∇∂µ
∂ν −∇∂ν

∂µ = (Γσ
νµ −Γσ

µν)∂σ (105)

which as we have seen transforms as a tensor and agrees with our previous definition.

1.13.5 Covariant derivative on Covector fields

Suppose we are given a covariant derivative ∇ on vector fields, then there is a natural
way of inducing a covariant derivative on one-forms by imposing the condition that the
duality operation be compatible with the Leibniz rule: Given two vector fields X and Y
together with a field of one-forms ϕ , one sets

(∇X ϕ)(Y ) := X(ϕ(Y ))−ϕ(∇XY ) (106)

Let us now check that this indeed defines a field of one-forms. The linearity in the
variable Y with respect to addition is clear. Next for any smooth function f ∈C ∞(M ,R)
we have

∇X ϕ( fY ) = X(ϕ( fY ))−ϕ(∇X ( fY )) (107)

= X( f )ϕ(Y )+ f X(ϕ(Y ))−ϕ
(
X( f )Y + f ∇XY

)
= f (∇X ϕ)(Y ) (108)
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Next we need to check that this definition actually yields a covariant derivative on
covectors. Again multilinearity with respect to addition is obvious, as well as linearity
with respect to multiplication of X by a function. Finally,

∇X ( f ϕ)(Y ) = X( f ϕ(Y ))− f ϕ(∇XY ) = X( f )ϕ(Y )+ f ∇X ϕ(Y ) (109)

So the Leibniz rule is satisfied. The duality pairing

T ∗p M ×TpM →R (ϕ ,X) 7→ ϕ(X) (110)

is a special case of the contraction operation. The operation ∇ on one-forms has been
defined so as to satisfy the Leibniz rule under duality pairing:

X(ϕ(Y )) = ∇X ϕ(Y )+ϕ(∇XY ) (111)

Next we observe that

∇X ϕ = Xa(∇aϕb)θ
b (112)

with

∇aϕb := (∇eaϕ)(eb) = ea(ϕ(eb))−ϕ(∇eaeb) = ea(ϕb)−Γc
baϕc (113)

1.13.6 Higher order Tensors

We can now extend ∇ to tensors of arbitrary valence: If T is r covariant and s contravari-
ant one sets

(∇X T )(X1, ...,Xr,ϕ1, ...,ϕs) := X(T (X1, ...,Xr,ϕ1, ...,ϕs)) (114)

−T (∇X X1,X2, ...,Xr,ϕ1, ...,ϕs)− ...−T (X1,X2, ...,∇X Xr,ϕ1, ...,ϕs) (115)

−T (X1,X2, ...,Xr,∇X ϕ
1, ...,ϕs)− ...−T (X1,X2, ...,Xr,ϕ1, ...,∇X ϕ

s) (116)

In order to verify that this indeed yields a covariant derivative on tensors of valence
(r,s) we solely need to verify that ∇X T is a tensor of valence (r,s) and that ∇X satisfies
the Leibniz rule, as the other properties are obvious. However, that ∇X T is a tensor of
the same valence as T is clear, for ∇X T is linear over C ∞(M ,R) in every coordinate.
An easy calculation also shows that

∇X ( f T ) = X( f )∇X T + f ∇X T (117)

Locally, we may write

∇X T = Xa
∇aT b1...bs

a1...ar
θ

a1⊗ ...⊗θ
ar ⊗ eb1⊗ ...⊗ ebs (118)

with

∇aT b1...bs
a1...ar

:= (∇aT )(ea1 , ...ear ,θ
b1 , ...,θ bs) (119)

= ea(T b1...bs
a1...ar

)−Γc
a1aT b1...bs

ca2...ar
(120)

−...−Γc
araT b1...bs

a1...ar−1c−Γb1
caT cb2...bs

a1...ar
− ...−Γbs

caT b1...bs−1c
a1...ar (121)

We may also define

∇T := (∇aT b1...bs
a1...ar

)θ a⊗θ
a1⊗ ...⊗θ

ar ⊗ eb1⊗ ...⊗ ebs (122)

and clearly then (∇T )(X) = ∇X T .
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2 E X A M Q U E S T I O N S :

2.1 Lie bracket, Jacobi identity, Levi-Civita connection, Riemann curvature tensor
and its properties

2.1.1 Lie Bracket and Jacobi identity

We recall that if we are given a manifold M the set of vector fields X (M ) is linearly
isomorphic to the space of derivations on C ∞(M ,R). Thus for fixed vector fields
ξ ,ζ ∈X (M ) we may consider the map [ξ ,ζ ] : C ∞(M ,R)→ C ∞(M ,R) given by

f 7→ ξ (ζ ( f ))−ζ (ξ ( f )) (123)

An easy calculation immediately shows that this linear map indeed is a derivation on
C ∞(M ,R), that is,

[ξ ,ζ ]( f g) = [ξ ,ζ ]( f )g+ f [ξ ,ζ ](g) (124)

Using the before mentioned isomorphism we infer that [ξ ,ζ ] ∈X (M ) can be inter-
preted as a vector field on M . This vector field is called the Lie bracket of ξ ,ζ . The
Lie bracket [, ] itself can be understood as an antisymmetric, bilinear map

[, ] : X (M )×X (M )→X (M ) (125)

The Lie bracket satisfies the Jacobi identity: For all ξ ,ζ ,ν ∈X (M ) we have

[[ξ ,ζ ],ν ] = [ξ , [ζ ,ν ]]− [ζ , [ξ ,ν ]] (126)

Proving this identity is also rather easy, since it poses only computational obstacles.

2.1.2 Levi-Civita Connection

We have seen that we can build a covariant derivative on tensors of any valence from
only having a covariant derivative on vector fields. One of the fundamental results
in pseudo Riemannian geometry is the existence of a torsion-free connection which
preserves the metric. This is called the Levi Civita connection and it is of utmost
importance.

Theorem 7 (Levi Civita Connection). Let g be a two-covariant symmetric nondegen-
erate tensor field on a manifold M . Then there exists a unique connection ∇ such
that

1. ∇g = 0

2. The torsion tensor T (X ,Y ) = ∇XY −∇Y X− [X ,Y ] of ∇ vanishes.

Proof. We first show that if such a Levi Civita connection exists, it must be unique. To
see this, we first observe that if ∇g = 0, then ∇X g = 0 for all X ∈X (M ). Thus

X(g(Y ,Z)) = (∇X g)(Y ,Z)+ g(∇XY ,Z)+ g(Y ,∇X Z) (127)



E X A M Q U E S T I O N S : 21

turns into

X(g(Y ,Z)) = g(∇XY ,Z)+ g(Y ,∇X Z) (128)

We may rewrite this equation by applying cyclic permutations to X ,Y and Z with a
minus sign for the last equation. By adding all these terms we obtain

X(g(Y ,Z))+Y (g(X ,Z))−Z(g(X ,Y )) (129)

= g(∇XY +∇Y X ,Z)+ g(∇Y Z−∇ZY ,X)+ g(∇X Z−∇ZX ,Y ) (130)

Because the torsion tensor vanishes the right hand side of the previous equation turns
into

2g(∇XY ,Z)−g([X ,Y ],Z)+ g([Y ,Z],X)+ g([X ,Z],Y ) (131)

which leads us to Koszul’s formula

g(∇XY ,Z) = 1
2

{
X
(
g(Y ,Z)

)
+Y

(
g(Z,X)

)
(132)

−Z
(
g(X ,Y )

)
+ g([X ,Y ],Z)−g([Y ,Z],X)−g([X ,Z],Y )

}
(133)

Hence, if a Levi-Civita connection exists, it must be unique, because Z is arbitrary, g is
non degenerate, and the right hand side does not depend on ∇. To prove existence of
a Levi-Civita connection we note that for given vector fields X ,Y the right hand side
of Koszul’s formula is linear over C ∞(M ,R) in the variable Z. Thus it must define a
covector field ζ (X ,Y ) ∈Ω(M ). By the musical isomorphism 6 there exists a vector
field, which we suggestively denote by ∇XY , such that ζ (X ,Y )(Z) = g(∇XY ,Z) for all
vector fields Z ∈X (M ). By using Koszul’s formula one then checks for all vector
fields X ,Y ,Z and all smooth functions f that

g(∇X (Y1 +Y2),Z) = g(∇XY1,Z)+ g(∇XY2,Z) (134)

g(∇X ( fY ),Z) = X( f )g(Y ,Z)+ f g(∇XY ,Z) (135)

g(∇XY ,Z)+ g(∇X Z,Y ) = X
(
(g(Y ,Z)

)
(136)

g(∇XY ,Z)−g(∇Y X ,Z) = g([X ,Y ],Z) (137)

Nondegeneracy of g thus implies that ∇ indeed yields a covariant derivative on vector
fields, which is torsion free and preserves the metric g.

Remark 1. Note that with minor variations the same proof shows that there is a unique
connection that is compatible with the metric and has prescribed torsion.

Remark 2. In the previous proof we have made use of the musical isomorphism. To
make the idea here more concrete, since ζ (X ,Y ) ∈Ω1(M ) is a covector field, we may
write ζ (X ,Y ) = ζidxi locally for a chart (U ,x). We may raise the indices ζ j := ζigi j

and define (locally) ξ (X ,Y ) by ζ j∂x j . But then

g(ξ (X ,Y ),Z) = gi j
ζiZk g(∂ j,∂k)︸ ︷︷ ︸

g jk

= gi jg jkζiZk = δ
i
kζiZk = ζiZi = ζ (X ,Y )(Z) (138)

Hence defining ∇XY := ξ (X ,Y ) does the trick.
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At last we note that there is a nice way to represent the Christoffel symbols in terms of
the metric coefficients of g. Indeed, by Koszul’s formula and the fact that [∂µ ,∂λ ] = 0
for all µ ,λ we have

g(∇γ∂β ,∂σ ) = gζ σ Γζ

βγ
=

1
2
(
∂γgβσ + ∂β gγσ −∂σ gβγ

)
(139)

Thus multiplying this equation by gασ yields

gασ gζ σ︸ ︷︷ ︸
δ α

ζ

Γζ

βγ
= Γα

βγ
=

gασ

2
(
∂γgβσ + ∂β gγσ −∂σ gβγ

)
(140)

2.1.3 Riemann curvature tensor and its properties

We shall begin by introducing the Riemann curvature tensor in an index-free fashion.

Definition 5. Let ∇ be a torsionless covariant derivative defined for vector fields. Then
the mapping

R : X (M )3→X (M ) R(X ,Y )(Z) := [∇X ,∇Y ]Z−∇[X ,Y ]Z (141)

is called the Riemann curvature tensor of M .

Lemma 1. The Riemann curvature tensor R is a tensor of valence (1,3).

Proof. We solely have to prove that R is C ∞-multilinear. So let f ∈ C ∞(M ,R). We
then have [X , fY ] = X( f )Y + f [X ,Y ] and thus

R(X , fY )(Z) = ∇X ( f ∇Y Z)− f ∇Y ∇X Z−X( f )∇Y Z− f ∇[X ,Y ]Z (142)

= X( f )∇Y Z−X( f )∇Y Z + f R(X ,Y )(Z) = f R(X ,Y )(Z) (143)

Since by definition we have R(X ,Y )(Z) = −R(Y ,X)(Z) we also have R( f X ,Y )(Z) =
f R(X ,Y )(Z). Analogously, one easily verifies that R(X ,Y )( f Z) = f R(X ,Y )(Z).

Lemma 2 (Coordinate Representation for R). Let (U ,x) be a chart. Then we have

R(∂k,∂l)(∂ j) = Ri
jkl∂i (144)

where

Ri
jkl =

∂

∂xl Γi
k j−

∂

∂xk Γi
l j +Γi

lmΓm
k j−Γi

kmΓm
l j (145)

Proof. Since [∂i,∂ j] = 0 for all i, j we have

R(∂k,∂l)(∂ j) = ∇∂k
∇∂l

∂ j−∇∂l
∇∂k

∂ j (146)

But we also know that

∇∂k
∇∂l

∂ j = ∇∂k
(Γm

jl∂m) =
∂

∂xk Γm
jl∂m +Γm

jlΓ
r
m j∂r (147)

Now exchanging k and l and subtracting the respective terms gives the assertion.
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On the other hand, if we consider the induced covariant derivative on covector fields
we observe that

∇∂k
dx j = (∇∂k

dx j)(∂a)dxa =
(

∂k(dx j(∂a)︸ ︷︷ ︸
=δ

j
a

)

︸ ︷︷ ︸
=0

−dx j(∇∂k
∂a)
)

dxa = −Γ j
akdxa (148)

and therefore

∇∂l
∇∂k

dx j = −∇∂l
(Γ j

akdxa) = −
[
∂lΓ

j
akdxa +Γ j

ak ∇∂l
dxa︸ ︷︷ ︸

=−Γa
bldxb

]
(149)

=
[
Γ j

akΓa
bl−∂lΓ

j
bk

]
dxb (150)

Therefore, we obtain

∇∂l
∇∂k

dx j−∇∂k
∇∂l

dx j =
[
Γ j

akΓa
bl−∂lΓ

j
bk−Γ j

alΓ
a
bk + ∂kΓ j

bl

]
dxb = −R j

blkdxb (151)

For a general tensor T and torsion free connection, each tensor index comes with a
corresponding Riemann tensor term:

∇∂µ
∇∂ν

T b1...bs
a1...ar

−∇∂ν
∇∂µ

T b1...bs
a1...ar

(152)

= −Rσ
a1µνT b1...bs

σ ...ar − ...−Rσ
arµνT b1...bs

a1...σ +Rb1
σµ νT σ ...bs

a1...ar
+ ...+Rbs

σ µνT b1...σ
a1...ar

(153)

From now on we assume a Levi Civita connection.

Theorem 8. There exists a coordinate system in which the metric tensor field has
vanishing second derivatives at p if and only if its Riemann tensor vanishes at p.
Furthermore, there exists a coordinate system in which the metric tensor field has
constant entries near p if and only if the Riemann tensor vanishes near p.

We now list some symmetries of the curvature tensor of the Levi-Civita connection:

1. Obviously we have

Rδ

γαβ
= −Rδ

γβα
(154)

2. The first Bianchi identity:

Rδ

γαβ
+Rδ

αβγ
+Rδ

βγα
= 0 (155)

or put differently

R(X ,Y )(Z)+R(Y ,Z)(X)+R(Z,X)(Y ) = 0 (156)

for all X ,Y ,Z ∈X (M ).



E X A M Q U E S T I O N S : 24

Proof. For any R-linear map F : X 3→X define the mapping S(F) : X 3→
X by

S(F)(X ,Y ,Z) := F(X ,Y ,Z)+F(Y ,Z,X)+F(Z,X ,Y ) (157)

Then a cyclic permutation of X ,Y ,Z obviously leaves S(F)(X ,Y ,Z) unchanged.
Thus

S(R)(X ,Y ,Z) =S∇Y ∇X Z−S∇X ∇Y Z =S∇X ∇ZY −S∇X ∇Y Z

=S∇X (∇ZY −∇Y Z︸ ︷︷ ︸
−[Y ,Z]

) (158)

However, since R is a tensor and thus is C ∞-multilinear it suffices to prove
SR(∂ j,∂k)(∂l) = 0. But from what we have seen in (158) this follows immedi-
ately from [∂k,∂l ] = 0.

3. The pair interchange symmetry:

Rαβγδ = Rγδαβ (159)

where Rγδαβ = gγσ Rσ

δαβ
.

Proof. In order to prove this, we shall suppose that our given metric is twice
differentiable. We then know that for any point p ∈M there exists a coordinate
system in which the connection coefficients Γα

βγ
vanish at p. We thus have

Rα

βγδ
= ∂γ Γα

βδ
−∂δ Γα

βγ
=

1
2

{
gασ

∂γ(∂σ gσβ + ∂β gσδ −∂σ gβδ ) (160)

−gασ
∂δ (∂γgσβ + ∂β gσγ −∂σ gβγ)

}
(161)

=
gασ

2

{
∂γ∂β gσδ −∂γ∂σ gβδ −∂δ ∂β gσγ + ∂δ ∂σ gβγ

}
(162)

and from the last expression, after having lowered the index α , that is, Rα

βγδ
=

gσαRσ

βγδ
, the above equation yields the claim.

4. We have Rαβγδ = −Rβαγδ .

Proof. Indeed,

Rαβγδ = Rγδαβ = −Rγδβα = −Rβαγδ (163)

5. The second Bianchi identity:

∇αRσβγδ +∇σ Rβαγδ +∇β Rασγδ = 0 (164)
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Proof. We again work in coordinates in which the derivatives of the metric vanish
at p ∈M . A calculation similar to the one for the pair interchange symmetry
yields

∇αRσβγδ = ∂αRσβγδ (165)

=
1
2

{
∂α∂γ∂β gσδ −∂α∂γ∂σ gβσ −∂α∂δ ∂β gσγ + ∂α∂δ ∂σ gβγ

}
(166)

From this the result will follow after inspecting the terms of the sum on the left
hand side of (164).

6. The Ricci tensor is defined as

Rαβ := Rσ

ασβ
(167)

The pair interchange property implies that the Ricci tensor is symmetric, since

Rαβ = gδσ Rδασβ = gδσ Rσβδα = Rβα (168)

2.2 Local inertial coordinates, Geodesic deviation(Jacobi equation), tidal forces

2.2.1 Local inertial coordinates

Proposition 3. Let g be a Lorentzian metric on M .

1. For every p ∈M there exists a neighborhood of p with a coordinate system such
that gµν = ηµν = diag(−1,1, ...,1) at p.

2. If g is differentiable, then the coordinates can be further chosen so that

∂σ gαβ = 0 ⇐⇒ Γα

βγ
= 0 (169)

at p.

Proof. For the first point, let y be any local coordinate system around p. We may
assume without loss of generality, by shifting by a constant vector, that p corresponds
to y(p) = 0. Let ea = eµ

a
∂

∂yµ be any frame at p such that g(ea,eb) = ηab. Existence of
such a frame follows from Gram-Schmidt. Calculating the determinant of both sides of
the equation

gµνeµ
a eν

b = ηab (170)

yields, at p,

det(gµν)det(eµ
a )

2 = −1 (171)

So the determinant of e = (eµ
a )a,µ is nonvanishing. Thus e is a local diffeomorphism,

so we may define a new chart x implicitly by the equation

y = e◦ x ⇐⇒ yµ = eµ
a xa ∀µ (172)
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But then we note that

∂

∂xa

∣∣∣
p
= Tx(p)x

−1(ea)
y−1◦e=x−1

= Te(x(p))y
−1 ◦Tx(p)e(ea)︸ ︷︷ ︸

(eµ
a )µ

= eµ
a

∂

∂yµ

∣∣∣
y(p)

(173)

and therefore

g(∂xa ,∂xb) = eµ
a eν

b g(∂yµ ,∂yν ) = ηab (174)

For the second claim we will use the formula

Γi
jk =

∂xi

∂ys
∂ 2ys

∂x j∂xk +
∂xi

∂ys
∂yl

∂x j
∂yr

∂xk Γ̂s
lr (175)

Let x be the coordinate chart constructed in the first part of the proof and recall that p
lies at the origin of those coordinates. The new coordinates x̂ j will be implicitly defined
by the equations

xi = x̂i +
1
2

Ai
jkx̂ jx̂k (176)

where {Ai
jk} is a set of constants, symmetric with respect to the interchange of j and k.

In these coordinates we have

Γ̂i
jk =

∂ x̂i

∂xs
∂ 2xs

∂ x̂ j∂ x̂k +
∂ x̂i

∂xs
∂xl

∂ x̂ j
∂xr

∂ x̂k Γs
lr (177)

Proof to be finished....

2.2.2 Calculus of Variations and the Euler-Lagrange equation (?)

The calculus of variations deals with the problem ofminimizing (in fact, extremizing)
nonlinear functionals of the form

L ( f ) =
∫

L( f ,∂1 f ,∂2 f , ...,∂n f )(x)dλ (x) (178)

where the Lagrangian L is a function R×Rn→R. If we assume now that f extremizes
the functional L , we will certainly have

d
dt

∣∣∣
t=0

L ( f + tg) = 0 (179)

for any other (reasonable) function g (this is because the map t 7→L ( f + tg) has a
local extremum at t = 0). By the chain rule we have

d
dt

L ( f + tg) =
∫

∂1L(...)g+
∫

∂
1+ jL(...)∂x jg︸ ︷︷ ︸

summation convention

(180)

and integration by parts yields

d
dt

L ( f + tg) =
∫ {

∂1L(...)−∂x j∂
1+ jL(...)

}
g (181)
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Since this is supposed to hold for all g we get the Euler Lagrange equation

∂1L( f ,∂1 f , ...,∂n f )−∂x j∂
1+ jL( f ,∂1 f , ...,∂n f ) = 0 (182)

In physics notation this reads as

∂L
∂ f
−∂

j ∂L
∂ (∂ j f )

= 0 (183)

2.2.3 Geodesic equation

In a Riemannian manifold M with metric tensor g, the length L of a continuously
differentiable curve γ : [a,b]→M is defined by

L(γ) =
∫ b

a

√
gγ(t)(γ̇(t), γ̇(t))dt (184)

In Riemannian geometry, all geodesics are locally distance-minimizing paths, but the
converse is not true. In fact, only paths that are both locally distance minimizing and
parameterized proportionately to arc-length are geodesics. Another equivalent way of
defining geodesics on a Riemannian manifold, is to define them as the minima of the
following action or energy functional

E(γ) =
1
2

∫ b

a
gγ(t)(γ̇(t), γ̇(t))dt (185)

An application of the Cauchy Schwarz inequality immediately yields

L(γ)2 ≤ 2(b−a)E(γ) (186)

All minima of E are also minima of L, but the minima of L form a bigger set since paths
that are minima of L can be arbitrarily re-parameterized (without changing their length),
while minima of E cannot. The geodesic equation is the associated Euler-Lagrange
equation with respect to the energy functional E. In this case the Euler Lagrange
equation turns into

∂L
∂γ

=
d
ds

∂L
∂ γ̇

(187)

Writing this in coordinates x = (xµ) we get with γµ = xµ ◦ γ

∂L
∂γλ

=
1
2

∂λ gµν γ̇
µ

γ̇
ν (188)

∂L
∂ γ̇λ

= gµλ γ̇
µ (189)

and

d
ds

{
gµλ (γ)γ̇

µ

}
= ∂νgµν γ̇

µ
γ̇

ν + gµν γ̈
µ (190)

=
1
2

∂νgµλ γ̇
µ

γ̇
ν +

1
2

∂µgνλ γ̇
µ

γ̇
ν + gµλ γ̈

µ (191)
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Plugging in all the expressions and putting it all together the geodesic equation reads as

gµλ γ̈
µ =

1
2

{
∂λ gµν −∂νgµλ −∂µgνλ

}
γ̇

µ
γ̇

ν = −Γλ µν γ̇
µ

γ̇
ν (192)

and by raising the index λ , that is, by multiplying the previous equation with gσλ , we
obtain

γ̈
λ +Γλ

µν γ̇
µ

γ̇
ν = 0 (193)

The physics way of writing this is

d2xµ

ds2 +Γµ

αβ

dxα

ds
dxβ

ds
= 0 (194)

which, in my opinion, seems hellishly confusing.

This gives a very convenient way of calculating the Christoffel symbols: given a metric
g, write down L, work out the Euler-Lagrange equations, and identify the Christoffels
as the coefficients of the first derivative terms in those equations.

2.2.4 Derivatives of curves as vector fields (?)

Let γ : I→M be a smooth curve. If f ∈ C ∞(M ,R) is a smooth function on M , then
the function f ◦ γ is a smooth map I→R. Thus we can take the derivative

d
ds

( f ◦ γ)(s) (195)

Now define γ̇(s) by

γ̇(s)( f ) := ( f ◦ γ)(s) ( f ∈ C ∞(M ,R)) (196)

Then of course γ̇(s) ∈ Tγ(s)M for all s ∈ I.

2.2.5 Geodesic Deviation - Jacobi equation

How are extended bodies, as opposed to point objects, affected by the gravitational
field? In order to understand this, we shall consider a one-parameter family of geodesics(

γ(.,λ )
)

λ∈R
(197)

Throughout, we will assume every bit of necessary smoothness. Now set

Z(s,λ ) :=
∂γ(s,λ )

∂λ
≡ ∂γα(s,λ )

∂λ
∂α (198)

For each λ this defines a vector field Z along γ(s,λ ), which measures how nearby
geodesics deviate from each other, since

γ
α(s,λ )− γ

α(s,λ0) = Zα(λ −λ0)+O((λ −λ0)
2) (199)
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To measure how a vector field W =W µ∂µ changes along s 7→ γ(s,λ ), one introduces
the differential operator D

ds defined by

DW
ds

:= γ̇
β

∇βW = γ̇
β

∂βW µ
∂µ + γ̇

βW µ
∇β ∂µ (200)

= γ̇
β (∂βW µ)︸ ︷︷ ︸

∂ (W µ ◦γ)
∂ s

∂µ + γ̇
βW µ Γζ

µβ
∂ζ (201)

Analogously, we can define

DW
dλ

:= Zβ
∇βW =

∂γβ

∂λ
(∂βW µ)∂µ +

∂γβ

∂λ
W µ Γζ

µβ
∂ζ (202)

Now assume that each member of the family of geodesics (γ(.,λ ))λ is an integral curve
of a vector field ζλ . By definition this means

∀s : γ̇(s,λ ) = ζλ (γ(s,λ )) (203)

If we want to express this very sloppily, we would write

γ̇ = ζ (204)

We then have

d2γµ

ds
(s,λ ) =

dζ
µ

λ
(γ(s,λ ))
ds

=
∂ζ

µ

λ
(s,λ )

∂xν
γ̇

ν(s,λ ) (205)

so that we can define

D2γ

ds
:=

d2γµ

ds2 ∂µ +Γµ

αβ
γ̇

α
γ̇

β
∂µ =

∂ζ µ

∂xα
ζ

α
∂µ +Γµ

αβ
ζ

α
ζ

β
∂µ = ζ

α
∇αζ (206)

and if we are again sloppy, this reads as

D2γ

ds
= γ̇

α
∇α γ̇ (207)

Since s 7→ γ(s,λ ) is a geodesic we have by (206)

D2γ

ds
= 0 (208)

We then have (note that we drastically abuse notation here)

DZ
ds

=
∂ 2γµ

∂λ
∂µ +Γµ

αβ
γ̇

α ∂γβ

∂λ
∂µ =

Dγ̇

dλ
(209)

Abusing notation yet again,

∇γ̇Z = γ̇
ν
∇νZ = γ̇

ν
∇ν

(
∂γµ

∂λ
∂µ

)
=

∂ 2γµ

∂ s∂λ
∂µ +Γµ

αβ
˙γα

∂γβ

∂λ
= Zβ

∇β γ̇ = ∇Z γ̇ (210)
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Thus, ∇γ̇Z = ∇Z γ̇ . One then also calculates quite easily (by accepting the abusing
conventions and faulty definitions) that(D

ds
D

dλ
− D

dλ

D
ds

)
W =

[
Rµ

δαβ
γ̇

αZβW δ

]
∂µ (211)

which is referred to as the Jacobi equation, or as the geodesic deviation equation. If
W µ = γ̇µ , then by equation (207) we have D

ds γ̇ = 0 and thus the second term of at the
left-hand side of (211) is zero, and from D

dλ
γ̇ = D

dsZ we obtain

D2Z
dss =

[
Rµ

δαβ
γ̇

αZβ
γ̇

δ

]
∂µ (212)

This is the so called geodesic deviation equation. In the index-free notation this reads as

D2Z
dss = R(γ̇ ,Z)γ̇ (213)

Solutions to the geodesic deviation equation are called Jacobi fields along γ . The
previous equation shows that curvature causes relative acceleration between neigh-
boring geodesics. Keeping in mind that gravitational force and acceleration are indis-
tinguishable, we say that curvature produces a “gravitational tidal force” between freely
falling nearby observers.
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2.3 Einstein equations and matter: examples of energy-momentum tensors, dust in
general relativity, the continuity equation

It is known from lectures on special relativity that Einstein’s equation in vaccuum read

Rµν = 0 (214)

where Rµν is the Ricci tensor Rµν = Rσ
µσν . It is natural to anticipate, in the presence

of matter, that the right-hand side of the above equation might not be zero, but rather
will be an object describing the density of energy of matter fields. Our idea is: energy
produces curvature.

2.3.1 Dust in general Relativity

By definition, dust is a cloud of noninteracting particles, whose velocities vary smoothly
from point to point in spacetime. At each point we have a smooth function ρ ∈ C ∞(M )
which represents the density of the dust: this is the mass per unit volume measured in a
frame in which the particles are at rest. For example, if there are n particles per unit
volume and each has rest mass m, then ρ = nm. A rest frame is a frame in which the
particles do not move, so that their space velocity is zero. If we assumed we were in
special relativity, particles in such a rest frame would have velocity four-vector

u = uµ
∂µ = ∂t ⇐⇒ (uµ) = (1,0) (215)

Let an observer move with space velocity v ∈R3 with respect to the dust, so she has a
four velocity vector

(vµ) = γ(1,v) (216)

where γ := 1√
1−|v|2

is the Lorentz contraction factor. Recall that

L =
1

γ(v)
L0 (217)

where

• L is the length observed by an observer in motion relative to the object

• L0 is the proper length (the length of the object in its rest frame)

• γ(v) is the Lorentz factor, defined as

1√
1−|v|2/c2

(218)

• v is the relative velocity between the observer and the moving object

• c is the speed of light
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As is standard, we shall assume c = 1. Continuing with (216): We choose a coordinate
system so that the velocity is aligned along the x-axis and is pointing in the positive
direction. Then the observer has velocity v along the x-axis. Let there be n particles of
rest mass m in a box with sides dx,dy and dz in the reference frame of the dust. The
observer sees n particles of rest mass m in a box with sides γ−1dx (Lorentz contraction
factor!), dy and dz, with space velocity −v, and therefore energy

mnγ (219)

in a volume γ−1dxdydz and hence a density

mnγ
2 = ρ(uµvµ︸︷︷︸

=γ

)2 = ρuµuν︸ ︷︷ ︸
Tµν

vµvν (220)

This gives rise to the so-called energy momentum tensor of dust with energy density ρ

and four velocity vector u given by

T = Tµνdxµ ⊗dxν = (ρuµuν)dxµ ⊗dxν (221)

where, of course, uµ = ηζ µuζ and analogously for uν . This tensor is used to measure the
energy density of dust in general frames. The above, of course carries over immediately
to general relativity, via the correspondence principle. Recall that the correspondence
principle is a philosophical guideline for the selection of new theories in physical
science, requiring that they explain all the phenomena for which a preceding theory was
valid. Thus, what needs to be done is to replace the special relativistic normalization
ηµνuµuν = −1 of the four velocity vector with gµνuµuν = −1. Moreover, in any
relevant equations indices are raised and lowered by means of the metric g rather than
with the Minkowski metric η , while partial derivatives are replaced with covariant ones.
To put the preceding discussion very mathematically, the so-called energy momentum
tensor, or more generally the stress energy tensor of a relativistic pressureless fluid, can
be written in the simple form

T = ρuµuν
∂µ ⊗∂ν (222)

where the world lines of the dust particles are the integral curves of the four-velocity
u = (uµ) and the matter density is given by the scalar function ρ ∈ C ∞. Provide some
Examples!

2.3.2 The continuity equation

Energy momentum tensors in special relativity satisfy a conservation identity:

∂νT µν = 0 (223)

In order to verify this equation for dust, we need to know what the equations are first.
Since we assume that the particles are non-interacting, in special relativity each of them
moves along a straight line. Now, straight lines are geodesics in Minkowski spacetimes,
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so if u is the vector field tangent to geodesics followed by the particles, normalized so
that g(u,u) = −1, we have seen in equation (206) that

uµ
∇µu = 0 (224)

Since the number of particles is conserved, we also have the conservation equation

∇µ(ρu)µ = 0 (225)

Equation (225) is called the continuity equation. Whether in curved spacetime or not,
let us calculate the divergence of the energy momentum tensor T :

∇µT µν = (∇µT )(dxµ ,dxν) = ∂µT µν −T (∇µdxµ ,dxν)−T (dxµ ,∇µdxν) (226)

Now recall that

∇µdxω = −Γω
σ µdxσ (227)

∇µ∂ω = Γσ
ωµ∂σ (228)

and thus we see that equation (226) transforms to be

∇µT µν = ∂µT µν +Γµ

µωT ων +Γν
µωT µω (229)

On the other hand, we have

∇µ(ρu)µ =
[
∇µ(ρu)

]
(dxµ) = ∂µ(ρuµ)−ρu(∇µdxµ) (230)

= ∂µ(ρuµ)+ρuω Γµ

µω (231)

and similarly

uµ
∇µuν = uµ(∇µu)(dxν) = uµ

∂µuν + uµuω Γν
µω (232)

Therefore,

∇µ(ρu)µuν +ρuµ
∇µuν (233)

= uν
∂µ(ρuµ)+ρuµ(∂µuν)︸ ︷︷ ︸

∂µ (uν uµ ρ)

+uν
ρuω Γµ

µω +ρuµuω Γν
µω︸ ︷︷ ︸

Γµ
µω T ν ω+Γν

µω T µω

(234)

Hence in total we obtain

∇µT µν = ∇µ(ρu)µuν +ρuµ
∇µuν (235)

where the first term on the right hand side vanishes due to continuity equation and the
left hand side vanishes because of the geodesic equation (224). It is noteworthy that if
T µν is interpreted as a function to which we apply the covariant derivative, then

∇µ(T µ
ν) = ∂µ(ρuµuν) = ∂µ(ρuµ)uν +ρuµ

∂µuν (236)
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which is a good memorization tool for the previous equations. The vanishing of the
divergence of T in (235) is actually equivalent to equation (224) + (225) in regions
where the density ρ does not vanish. Indeed, if we remember the condition

g(u,u) = uνuν = −1 (237)

then we have

0 = ∂µ(uνuν) = ∂µ(gανuαuν) = ∂µ(g(u,u)) = (∇µg)(u,u)︸ ︷︷ ︸
=0

+2g(∇µu,u) (238)

= 2uαgαβ ∇µuβ = 2uβ ∇µuβ︸ ︷︷ ︸
dxβ (∇µ u)

(239)

Therefore, multiplying equation (235) by uν (and using the assumption ∇µT µ = 0)
yields

0 = uν∇µT µν = ∇µ(ρu)µ uνuν︸︷︷︸
=−1

+ρuµ uν∇µuν︸ ︷︷ ︸
=0

(240)

from which we immediately infer that ∇µ(ρu)µ = 0. Thus it also immediately follows
that the geodesic equation is satisfied.

2.3.3 Some bullshitery of index manipulation (?)

We want to extend the musical isomorphism (6) to arbitrary tensors.

Definition 6. Let T ∈T l
k be a tensor. We define ↓ j

i T ∈T l−1
k+1 via

(↓ j
i T )(X1, ...,Xk+1,ϕ1, ...,ϕ l−1) :=

T (X1, . . . ,Xi−1,Xi+1, . . .Xk+1,ϕ1, . . . ,Ψ(Xi)︸ ︷︷ ︸
j-th slot

, . . .ϕ l−1)
(

ϕ
s ∈Ω,Xr ∈X

)
where Ψ : X →Ω was the musical isomorphism defined in (6) (this is just lowering of
indices). Recall that in the physics notation Ψ(X) for a vector field X is simply given
by

Ψ(X µ
∂µ) = X µgµσ dxσ (241)

locally (which is just lowering of indices). Locally the coefficients of the tensor
↓ j

i T ∈T l−1
k+1 are given by

(↓ j
i T ) j1... jl−1

i1...ik+1
= (↓ j

i T )(∂i1 , ...,∂ik+1 ,dx j1 , . . . ,dx jl−1) (242)

= T (∂i1 , . . . ,∂ii−1 ,∂ii+1 , . . .∂ik+1 ,dx j1 , . . . ,Ψ(∂ii)︸ ︷︷ ︸
jth-slot

, . . .dx jl−1) (243)

= T j1...

j-th slot︷︸︸︷
ζ ... jl−1

i1...ii−1,ii+1,...ik+1
giiζ (244)
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On the other hand, we may also define the inverse to the operation ↓ j
i : Let T ∈T l

k be
given, we define ↑ j

i T ∈T l+1
k−1 by

↑ j
i T (X1, . . . ,Xk−1,ϕ1, . . . ,ϕ l+1) :=

T (X1, . . . ,Ψ−1(ϕ j)︸ ︷︷ ︸
i-th slot

, . . .Xk−1,ϕ1, . . .ϕ j−1,ϕ j+1, . . . ,ϕ l+1)
(

ϕ
s ∈Ω,Xr ∈X

)

The coefficients of ↑ j
i T are given by

(↑ j
i T ) j1... jl+1

i1...ik−1
= T

j1,..., j j−1, j j+1,... jl+1

i1... ζ︸︷︷︸
ith-slot

...ik−1
g j jζ (245)

Theorem 9. Suppose we are working on a smooth Riemannian manifold (M ,g) and
let an arbitrary tensor T ∈T l

k be given. Let X ∈X , then

∇X (↓ j
i T ) =↓ j

i (∇X T ) ∇X (↑ j
i T ) =↑ j

i (∇X T ) (246)

Proof. See [3].

2.3.4 Einstein equations with Sources

The energy momentum tensor T provides a good candidate for the source term in
Einstein’s theory of gravitation. The energy momentum tensor of matter fields will be
described by a symmetric tensor satisfying

∇µT µν = 0 (247)

or equivalently (by Theorem 9)

∇
µTµν = 0 (248)

Theorem 10. We have the following identity:

∇
µ(Rµν −

1
2

Rgµν) = 0 (249)

where R := Rα
α = Rαβ

αβ
and Rµν = Rσ

µσν is the Ricci tensor.

Proof. We recall the second Bianchi identity

∇µRνραβ +∇νRρµαβ +∇ρRµναβ = 0 (250)

Raising indices by multiplying with gµαgνβ (this is yet again justified by Theorem 9)
we obtain

∇
αRβ

ραβ
+∇

β R α

ρ αβ
+∇ρRαβ

αβ
= 0 (251)

The previous equation is actually equivalent to the one we wanted to prove, so we are
done.
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Furthermore, we note that rescaling by any constant Λ we have

∇
µ(Λgµν) = 0 (252)

and therefore we are led to an equation compatible with (248):

Rµν −
1
2

Rgµν +Λgµν = κTµν (253)

We will se that κ will be made out to be 8πG
c4 . The constant Λ is called the cosmological

constant and current state-of-the art observations indicate strongly that Λ is nonzero:

Λ ' 10−121 Planck units (254)

Hence we will mostly assume Λ = 0 and use units G = c = 1, so that equation (253)
boils down to

Gµν := Rµν −
1
2

Rgµν = 8πTµν (255)

When writing up these equations Einstein was not aware of the following theorems by
Lovelock which show that (253) is the only reasonable tensor equation in which the
energy momentum tensor appears as as a source:

Theorem 11. In four spacetime dimensions, all symmetric tensors Eµν built-out of the
metric, its first and its second derivatives, and satisfying identically ∇µEµν = 0 are of
the form

Eµν = αGµν +βgµν (256)

with constants α ,β .

One might be interested in deriving the Einstein equations from a variational principle.
In this context another enlightening result of Lovelock reads:

Theorem 12. In spacetime dimension four, all coordinate invariant Lagrange functions
L which lead to second order field equations for a metric are of the form

L = (αR+β )
√
|detgµν | (257)

where α ,β are constants.
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2.4 The Schwarzschild metric: Eddington-Finkelstein extension; Time functions; the
black hole; what happens at r = 0;

2.4.1 The Schwarzschild metric and Birkhoff’s Theorem:

In Einstein’s theory of general relativity, the Schwarzschild metric (also known as the
Schwarzschild solution) is an exact solution to the Einstein field equations that describes
the gravitational field outside a spherical mass, on the assumption that the electric charge
of the mass, angular momentum of the mass, and universal cosmological constant are all
zero. The solution is a useful approximation for describing slowly rotating astronomical
objects such as many stars and planets, including Earth and the Sun. It was found by
Karl Schwarzschild in 1916, and around the same time independently by Johannes
Droste, who published his much more complete and modern-looking discussion only
four months after Schwarzschild.

According to Birkhoff’s theorem, the Schwarzschild metric is the most general spher-
ically symmetric vacuum solution of the Einstein field equations. A Schwarzschild
black hole or static black hole is a black hole that has neither electric charge nor angular
momentum. A Schwarzschild black hole is described by the Schwarzschild metric,
and cannot be distinguished from any other Schwarzschild black hole except by its mass.

The Schwarzschild black hole is characterized by a surrounding spherical boundary,
called the event horizon, which is situated at the Schwarzschild radius, often called the
radius of a black hole. The boundary is not a physical surface, and a person who fell
through the event horizon (before being torn apart by tidal forces), would not notice
any physical surface at that position; it is a mathematical surface which is significant
in determining the black hole’s properties. Any non-rotating and non-charged mass
that is smaller than its Schwarzschild radius forms a black hole. The solution of the
Einstein field equations is valid for any mass M, so in principle (according to general
relativity theory) a Schwarzschild black hole of any mass could exist if conditions
became sufficiently favorable to allow for its formation. The Schwarzschild metric is
given by

g = −
(

1− 2m
r

)
dt2 +

dr2

1− 2m
r

+ r2dΩ2 (258)

where t ∈R, r 6= 2m,0 and dΩ2 denotes the metric of the round unit 2-sphere

dΩ2 = dθ
2 + sin2

θdϕ
2 (259)

Birkhoff’s theorem now states the following:

Theorem 13 (Birkhoff). In a vacuum region, away from the set {r = 2m}, any spheri-
cally symmetric metric can locally be written in the Schwarzschild form, for some mass
parameter m.
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In view of Birkhoff’s theorem, we conclude that the hypothesis of spherical symmetry
implies in vacuum, at least locally, the existence of two further symmetries: translation
in t and reflections in t (that is t 7→ −t). More precisely, we obtain time translations
and time reflections. In the case where m = 0 the Schwarzschild metric reduces to the
Minkowski metric in spherical coordinates:

g|m=0 = η := −dt2 + dr2 + r2dΩ2 ≡−dt2 + dx2 + dy2 + dz2 (260)

2.4.2 What happens at r = 0?

Our Schwarzschild metric has problems when the sets {r = 0} and {r = 2m} are
approached. We start our analysis with the former, which is called a singularity. One
can calculate that

Rαβγδ Rαβγδ︸ ︷︷ ︸
K(r)

=
48m2

r6 (261)

which shows that the Kretschmann scalar Rαβγδ Rαβγδ satisfies

lim
r→0

K(r) = ∞ (262)

This is true regardless of the sign of m. However, the sign of m still makes a difference: If
m > 0, then any continuous curve starting in the region {r < 2m} has to cross {r = 2m},
before reaching the exterior world, where r is allowed to grow without bound. But
the value r = 2m is not allowed at this stage of our analysis. But when m < 0 nothing
prevents a continuous curve starting near {r = 0} to reach any value of r. What does
this even mean? Since K(r) is a scalar, we see that the curvature of the metric grows
without bounds when {r = 0} is approached independently of the coordinate system
used. In other words, there is no coordinate system in which the metric remains twice
differentiable (as needed to define the curvature tensor) and in which all components
of the Riemann tensor would remain bounded when approaching the set {r = 0}. Our
assumption will, from now on, always be that m > 0 unless explicitly stated otherwise.

2.4.3 Time functions, Time orientation, etc.

We start with the concept of time orientation. In special relativity this is taken for
granted: in coordinates where the Minkowski metric η takes the form

η = −dt2 + dx2 + dy2 + dz2 (263)

a timelike vector X µ∂µ is said to be past-pointing if X0 < 0. Note that this is solely
a convention. We will, however, shortly stumble across a situation where such a
decision will have to be made, namely when trying to distinguish black holes from
white holes. The above special relativistic notion of time orientation carries over to a
general manifold as follows:
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Definition 7. At every point p ∈M the set of time-like vectors, defined as{
X ∈ TpM | g(X ,X) < 0

}
(264)

splits into two components. One can see this upon noting that we can find a coordinate
system near p such that the metric at p coincides with the Minkowski metric. In
this coordinate system timelike vectors X = (X0,X) at p satisfy either X0 > |X|, or
X0 <−|X|. The time orientation is then defined as the choice of which timelike vectors
will be called future or past pointing. If this can be done continuously throughout the
manifold, we say that the manifold is time orientable. There are Lorentzian manifolds
for which this cannot be done, but as we are in physics we will ignore all mathematical
pathologies and assume that we are always in luck to work with time orientable stuff.
Such Lorentzian manifolds are called spacetimes. One defines null vectors as nonzero
vectors X such that g(X ,X) = 0. A vector is causal if it is timelike or null. One can
likewise talk about past or future directed null or causal vectors. All remaining vectors
are called spacelike.

Definition 8 (time function). A function f ∈ C ∞ will be called time function if ∇ f is
everywhere timelike past pointing. A cooordinate, say x0, is said to be a time coordinate
if x0 is a time function.

For example, f = t on Minkowski spacetime is a time function: indeed,

∇t = η
µν

∂µt∂ν = η
0ν

∂ν = −∂t (265)

and

η(∇t,∇t) = −1 (266)

On the other hand, consider f = t in the Schwarzschild metric: the inverse of the
Schwarzschild metric reads

gµν
∂µν = − 1

1− 2m
r

∂
2
t +

(
1− 2m

r

)
∂

2
r + r−2

(
∂

2
θ + sin−2(θ )∂ 2

ϕ

)
(267)

and thus

∇t = gµν
∂µt∂ν = g0ν

∂ν = − 1
1− 2m

r

∂t (268)

But then we have

g(∇t,∇t) =
g(∂t ,∂t)

(1− 2m
r )2

= − 1
1− 2m

r

(269)

and therefore the length of ∇t is < 0 whenever r > 2m and > 0 whenever r < 2m. So
we see that t is a time function in the region {r > 2m}, while it is not a time function

on {r < 2m}. A similar calculation yields ∇r =
(

1− 2m
r

)
∂r and therefore

g(∇r,∇r) =
(

1− 2m
r

)2
g(∂r,∂r) = 1− 2m

r
(270)
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So r is a time function in the region {r < 2m}. Recall next that a differentiable curve
is called timelike if its tangent vector is timelike everywhere. There are obvious
corresponding definitions of null, causal, or spacelike curves. Causal curves can further
be future directed, or past directed, according to the time orientation of their tangents.
A basic axiom of general relativity is that massive physical objects move along timelike
future directed curves.

Lemma 3. Let X be timelike and Y be causal. Then g(X ,Y ) < 0 if both X and Y are
consistently time-oriented, while g(X ,Y ) > 0 if they have opposite time orientations.

Proof. Given a point p ∈M in spacetime, we can find a coordinate system so that gµν

is diagonal at p with entries (−1,1, ...,1), and (apparently) in which X is proportional
to ∂0, that is X = X0∂0. Then of course

g(X ,Y ) = −X0Y 0 (271)

Since Y is causal we have Y 0 6= 0 and therefore g(X ,Y ) < 0 if X and Y are consistently
time-oriented, and g(X ,Y ) > 0 if the opposite is the case.

With this neat little fact in our toolbox we can prove the following:

Theorem 14. Time functions are strictly increasing along future directed causal curves.

Proof. Let γ be a future directed timelike curve and let f be a time function. Then

d( f ◦ γ)

ds
= γ̇

µ
∂µ f = γ̇

µgµνgσν
∂σ f = gµν γ̇

µ
∇

ν f = g(∇ f , γ̇) (272)

and since ∇ f is timelike by assumption and γ̇ is causal but oppositely time-directed,
their scalar product is positive. In other words,

d( f ◦ γ)

ds
> 0 (273)

and so f is strictly increasing along γ .
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2.5 The Schwarzschild metric: Stationary observers, the interpretation of m, the
Flamm paraboloid

2.6 The Kruskal-Szekeres extension of the Schwarzschild metric

2.7 The Schwarzschild metric: Conformal Carter-Penrose diagram

2.8 The Schwarzschild metric: Geodesics, the interpretation of E, circular timelike
geodesics

2.9 The Schwarzschild metric: Circular null geodesics, gravitational redshift, weak
field light bending

2.10 The Schwarzschild metric: Perihelion/periastron precession

2.11 The Lie derivative, an axiomatic approach, relation to isometries

2.11.1 The Lie derivative - an axiomatic approach

In differential geometry, the Lie derivative, named after Sophus Lie by Władysław
Ślebodziński, evaluates the change of a tensor field (including scalar functions, vector
fields and one-forms), along the flow defined by another vector field. This change is
coordinate invariant and therefore the Lie derivative is defined on any differentiable
manifold. In particular, it doesn’t require a predetermined connection or something of
the like. We will give a purely algebraic definition of the Lie derivative, completely
omitting the geometric interpretation thereof. So fix a vector field X ∈X . The algebraic
definition for the Lie derivative LX of a tensor field follows from the following four
axioms:

1. Axiom 1. The Lie derivative of a function is equal to the directional derivative of
the function:

LX ( f ) = X( f ) (274)

2. Axiom 2. The Lie derivative obeys the following version of Leibniz’s rule: For
any tensor fields S and T , we have

LX (S⊗T ) = LX S⊗T + S⊗LX T (275)

3. Axiom 3: The Lie derivative obeys the Leibniz rule with respect to contractions:

LX (T (Y1, . . . ,Yn)) (276)

= (LX T )(Y1, . . . ,Yn)+T ((LXY1), . . . ,Yn)+ · · ·+T (Y1, . . . , (LXYn)) (277)

4. Axiom 4: The Lie derivative commutes with exterior derivative on functions:

[LX ,d] = 0 (278)
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5. Axiom 5. The Lie derivative of a vector field Y ∈X is

LXY = [X ,Y ] (279)

6. Axiom 6. The Lie derivative of a covector field ϕ ∈Ω is

LX ϕ(Y ) = LX (ϕ(Y ))−ϕ(LXY ) (280)

It can be shown that we actually only need Axioms 1-4 in order to define the Lie
derivative. Let us check that LX ϕ , defined in Axiom 6, indeed defines a one-form. In
order to show this, it suffices to prove that LX ϕ is C ∞-linear over X . Let f ∈ C ∞ and
let Y ∈X . From

LX ( fY ) = [X , fY ] = X( f )Y + f LXY (281)

we deduce

LX ϕ( fY ) = LX (ϕ( fY ))−ϕ(LX ( fY )) (282)

= X( f )ϕ(Y )+ f X(ϕ(Y ))−X( f )ϕ(Y )− f ϕ(LXY ) = f LX ϕ(Y ) (283)

In coordinates we have

(LX ϕ)a = ∂a(LX ϕ) = X(ϕ(∂a))−ϕ(LX ∂a) = X(ϕa)−ϕ([Xb
∂b,∂a]) (284)

= Xb
∂bϕa +ϕ(∂aXb

∂b) = Xb
∂bϕa +ϕb∂aXb (285)

For general tensor fields T we note that

LX T (ϕ1,ϕ2, . . . ,X1,X2, . . .) = X(T (ϕ1,ϕ2, . . . ,X1,X2, . . .)) (286)

−T (LX ϕ1,ϕ2, . . . ,X1,X2, . . . )−T (ϕ1,LX ϕ2, . . .X1,X2, . . .) (287)

− . . .−T (ϕ1,ϕ2, . . . ,LX X1,X2, . . .)−T (ϕ1,ϕ2, . . . ,X1,LX X2, . . .)− . . . (288)

In particular, we get

LX T b1...bs
a1...ap

= Xa
∂a(T b1...bs

a1...ap
)+ ∂a1XaT b1...bs

aa2...ap
+ . . . (289)

+∂apXaT b1...bs
a1...a −∂bXb1T bb2...bs

a1...ap
− . . .−∂bXbsT b1...b

a1...ap
(290)

since

LX ∂s = −∂sXa
∂a LX θ

c = ∂lXc
θ

l (291)

with θ l := dxl .

Theorem 15. The Lie derivative satisfies

L[X ,Y ] = [LX ,LY ] (292)

for all X ,Y ∈X .
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Proof. The statement is clear if (292) is evaluated for functions f ∈ C ∞. Moreover, for
vector fields Z equation (292) is simply the jacobi identity. For ϕ ∈Ω we calculate

L[X ,Y ]ϕ(Z) = L[X ,Y ](ϕ(Z))−ϕ(L[X ,Y ]Z) (293)

= [LX ,LY ](ϕ(Z))−ϕ([LX ,LY ]Z) = [LX ,LY ]ϕ(Z) (294)

In particular, by axiom 2, we infer that

L[X ,Y ](S⊗T ) = L[X ,Y ]S⊗T + S⊗L[X ,Y ]T (295)

= [LX ,LY ]S⊗T + S⊗ [LX ,LY ]T = [LX ,LY ](S⊗T ) (296)

for tensor fields S,T . This concludes the proof since a general tensor field T is of the
form

T = T b1...bs
a1...ap

θ
a1⊗ . . .⊗θ

ap⊗∂b1⊗ . . .⊗∂bs (297)

2.11.2 Relation to Isometries

Let ϕ : M →N be a smooth map between smooth manifolds. For a vector X ∈ TpM
the pushforward of X under ϕ is defined by

(ϕ∗X)p( f ) := Tpϕ(X)( f ) = X( f ◦ϕ) (298)

for an arbitrary f ∈ C ∞(N ). (ϕ∗X)p is of course a derivation on N at ϕ(p), that is,
(ϕ∗X)p ∈ Tϕ(p)N . For a vector field X on M we might think that if we define ϕ∗X
in the same spirit as for usual vectors, this would yield a vector field on N . However,
this is not the case in general. If a point y ∈N has more than one pre-image, say
ϕ(p1) = ϕ(p2), then we cannot ensure in general that

Tp1ϕ(X(p1))( f ) = Tp2ϕ(X(p2))( f ) (299)

which is equivalent to

X(p1)( f ◦ϕ) = X(p2)( f ◦ϕ) (300)

So we might run into the trouble of ambiguity. Nonetheless, if ϕ is a local diffeomor-
phism all these problems vanish. Indeed, for y ∈N we may define the vector field
ϕ∗X ∈X (N ) by

ϕ∗X(y) := Tpϕ(X(p)) (301)

with p := ϕ−1(y). Directly from the definition it follows that (ψ ◦ϕ)∗ = ψ∗ ◦ϕ∗ and
thus also (ϕ−1)∗ = ϕ−1

∗ .

2.12 Isometries, Killing vectors, maximally symmetric space-times

2.13 FRWL metrics: Hubble law, cosmological red-shift formula, the red shift-factor
z and distance, the deceleration parameter

2.14 Einstein equations for a FRWL metric
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