
V E C T O R I A L E L L I P T I C
O P E R AT O R S

A L E X A N D E R Z A H R E R

We are given smooth bounded functions a jk ∈ C ∞
b such that the operator a jk∂ j∂k is elliptic. Moreover,

we may assume that there exists a distributional solution F ∈ L2 to the PDE

a jk
∂ j∂kφF = φG (1)

where G ∈ H1. We now prove that this already implies that F ∈ H2 (i.e. F ∈ L2 has a representative
( fl) ⊂S such that ( fl) is also Cauchy in H2). In order to prove this statement we first need to improve
Theorem 1.7 from the lecture notes.

Theorem 1. Let a jk,b j,c ∈ C ∞
b and assume that the operator a jk∂ j∂k + b j∂ j + c is elliptic and that

F ∈ L2 satisfies

(a jk
∂ j∂k + b j

∂ j + c)φF = φG (2)

for some G ∈ L2. Then F ∈ H1, i.e. F ∈ L2 has a representative that is also Cauchy in H1.

Proof. By Meyers-Serrin (with non-constant coefficients) F has a representative ( fl)⊂S which satisfies

‖(a jk
∂ j∂k + b j

∂ j + c)( fl− fk)‖L2 −→ 0 (3)

Now by ellipticity we obtain

γ‖ f‖2
Ḣ1 ≤

∣∣(a jk
∂ j f | ∂k f )L2

∣∣≤ ∣∣(∂ka jk
∂ j f | f )L2

∣∣︸ ︷︷ ︸
A

+
∣∣(a jk

∂ j∂k f | f )L2

∣∣︸ ︷︷ ︸
B

(4)

We may estimate B by the same procedure as in the proof of Theorem 1.7 with the only difference being
that we apply the statement of exercise 41 not for ε = γ

2 , but for ε = γ

3 . For A we do the following

A≤ ‖∂ka jk
∂ j f‖L2‖ f‖L2 ≤

exercise 41

γ

3
‖ f‖2

Ḣ1 +Cγ‖ f‖2
L2 (5)

and therefore we obtain

γ‖ f‖2
Ḣ1 ≤

2γ

3
‖ f‖2

Ḣ1 + 2Cγ‖ f‖2
L2 + ‖(a jk

∂ j∂k + b j
∂ j + c) f‖L2‖ f‖L2 (6)

By plugging in ( fk− fl) for f we see that ( fl) ⊂S is indeed Cauchy in H1, since ‖.‖H1 ' ‖.‖L2 +
‖.‖Ḣ1 .

We now get back to our case, where G is even in H1. By Theorem 1, we deduce that F ∈ L2 must
have a representative ( fl) ⊂S such that ( fl) is Cauchy in H1. For ( fl) to be Cauchy in H1 means
that, besides being Cauchy in L2, we also have that all the sequences (∂i fl) ⊂S are Cauchy in L2, thus
these sequences define elements ∂iF := [(∂i fl)]L2 ∈ L2. Analogously, we obtain ∂iG ∈ L2. Now how
wonderful would it be if we could simply take the i-th derivative of the equation

a jk
∂ j∂kφF = φG (7)
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and end up with yet another elliptic equation so that we could apply yet again Theorem 1? Quite
wonderful to be certain. However, it is not that simple as it turns out. We need to be a bit cleverer than
that. In order to deduce some kind of ellipticity we need to tread a vectorial path which will give us a lot
more freedom in the sense that it will yield a stronger version of Meyers Serrin. To this end, note that we
may consider the spaces

S d :=
d⊕

t=1

S (Lp)d :=
d⊕

t=1

Lp (Hs)d :=
d⊕

t=1

Hs (8)

where each space is endowed with the respective product topology induced by the norms

(Lp)d →R (F1, ...,Fd) 7→
(
∑

j
‖Fj‖p

Lp
)1/p (9)

(Hs)d →R (F1, ...,Fd) 7→
(
∑

j
‖Fj‖2

Hs
)1/2 (10)

In particular, for p = 2 the inner product on (L2)d is given by

(L2)d× (L2)d 3 (F ,G) 7→∑
j

(
Fj | G j)L2 (11)

In that setting, for given F ∈ (Lp)d or F ∈ (Hs)d we may define

φF := (φF1 , ...,φFd ) : S d → Cd ( f1, ..., fd) 7→ (φF1( f1), ...,φFd ( fd)) (12)

If we now have a differential operator D which acts on the cartesian product of d-functions then we may
simply write

DφF (13)

and we are pretty certain of what that means. To give a concrete example, if the dimension d = 2 and we
are given the differential operator

D( f1, f2) := (∂1 f1,∂1 f1 + ∂2 f2) (14)

then

DφF = (∂1φF1 ,∂1φF 1 + ∂2φF2) (15)

for all F ∈ (L2)2. This example should illustrate that differential operators D in the vectorial setting
certainly allow mixed terms of several of the φFi in each coordinate. Therein lies the strength of the
vectorial approach. We can now state a more general Theorem of Meyers Serrin 2.44 as follows:

Theorem 2 (Vectorial Meyers Serrin). Let F ∈ (L2)d and suppose there exists a G ∈ (L2)d such that

DφF = φG (16)

where D is some suitable differential operator (linear, elliptic,...), then F ∈ (L2)d has a representative
( fl) ∈S d so that (D fl) ⊂S d is Cauchy in (L2)d .

The proof to the above is pretty much the same as in the case proven in the lecture. The sole difference
is that one needs to execute the procedure from the notes for every vector entry separately. The benefit of
the above version of Meyers Serrin is that prospective differential operators enjoy much more freedom in
that formulation. Now what is a vectorial elliptic operator?

Definition 1. Let a jk ∈ C ∞
b and let B j and C be matrices whose entries are bounded smooth functions.

The differential operator D = a jk∂ j∂k + B j∂ j +C which acts on tuples of Schwarz functions f =
( f1, ..., fd) ∈S d by

a jk
∂ j∂k f +B j

∂ j f +C f ∈S d (17)
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[
note that the term a jk∂ j∂k f is just (a jk∂ j∂k f1, ...,a jk∂ j∂k fd)

]
is called elliptic, if there exists γ > 0 such

that for all f ∈S d we have

∑
i

∣∣(a jk
∂ j fi | ∂k fi

)
L2

∣∣≥ γ‖ f‖2
Ḣ1 ' γ ∑

i
‖ fi‖2

Ḣ1 (18)

Thus any elliptic operator in the usual sense (= definition given in the lecture), is a vectorial elliptic
operator. We consider again the equation that is initially given by the exercise

a jk
∂ j∂kφF = φG (19)

Taking the gradient on both sides yields

a jk
∂ j∂k∇φF +∇a jk

∂ j∂kφF = ∇φG (20)

The crucial step now is to note that equation (20) is elliptic in the gradient ∇φF . Indeed, the matrices B j

are given by B j
ik = ∂ia jk and C = 0, that is, equation (20) boils down to

a jk
∂ j∂k∇φF +B j

∂ j∇φF = ∇φG (21)

In that spirit it is more than time to prove Theorem 1 in the vectorial picture to exploit that fact.

Theorem 3. Let D be a vectorial elliptic operator as in the definition and assume that F ∈ (L2)d satisfies

DφF = φG (22)

for some G ∈ (L2)d . Then F ∈ (H1)d , i.e. F ∈ (L2)d has a representative that is also Cauchy in (H1)d .

Proof. By the Vectorial Meyers Serrin Theorem 2 F ∈ (L2)d has a representative ( fl) ∈S d such that
(D fl) ⊂S d is Cauchy in (L2)d . For h = (h1, ...,hd) ∈S d we have by ellipticity that

γ‖h‖2
Ḣ1 ≤∑

i

∣∣(a jk
∂ jhi | ∂khi

)
L2

∣∣ (23)

Seeing this we conclude that the proof is analogous to that of Theorem 1.

Now let the magic come forth: We know that equation (20) is elliptic and it is solved by ∇F =
[(∇ fl)](L2)d . As ∇G = [(∇gl)](L2)d ∈ (L2)d we may apply Theorem 3 to deduce that ∇F has a represen-

tative f ∇

l = ( f ∂1
l , ..., f ∂d

l ) ∈S d which is also Cauchy in (H1)d . This, however, exactly means that each
( f ∂i

l )⊂S is Cauchy in H1 and ‖ f ∂i
l −∂i fl‖L2 → 0. So we have established that both F and all ∂iF have

representatives which are Cauchy in H1. Is this already the statement? Not yet, as we have currently no
means to produce, out of thin air, a representative for F which is also Cauchy in H2. However, we are
very close to the truth now and we will continue by constructing the right representative ( f̂l) ⊂S for F
which will be Cauchy in H2. In order to do that, we quickly mention Proposition 2.42 and Exercise 2.43
stated right under the proposition in the lecture notes.

Proposition 1 (2.42 + Exercise 2.43). Let ϕ ∈S be non-negative such that
∫

ϕ = 1 and set ϕk := kdϕ(k.).
If ( fl) ⊂S is Cauchy in Lp, for p ∈ [1,∞], or in any Hs for s≥ 0, then the function

f̃k := lim
l
(ϕk ∗ fl) (limit is to be interpreted pointwise) (24)

is in C ∞
b and satisfies

‖ fl− f̃l‖?→ 0 (25)

for the respective ? ∈ {Hs,Lp}.
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Now it is noteworthy that if f̃k is as above, then ∂i f̃k = liml(ϕk ∗∂i fl). This is quite a nice property
which we will exploit fully now. First we also note that if ( fl), (gl)⊂S represent the same element in
Lp, then f̃k = g̃k for all k ∈N. Indeed,

‖ϕk ∗ fl−ϕk ∗gl‖Lp = ‖ϕk ∗ ( fl−gl)‖Lp ≤ ‖ϕk‖L1‖ fl−gl‖Lp → 0 (26)

and therefore

0 = lim
l
‖ϕk ∗ fl−ϕk ∗gl‖Lp = ‖ f̃k− g̃k‖Lp (27)

which shows f̃k = g̃k almost everywhere, however, as both functions are continuous equality holds.
So we get back to our original task at hand. We have found a representative ( fl) ⊂S for F which

is also Cauchy in H1, and we have found a representative ( f ∂i
l ) ⊂ S for the equivalence class of

the derivatives [(∂i fl)]L2 ∈ L2 which is also Cauchy in H1. By the above Proposition we know that
f̃k := liml ϕk ∗ fl ∈ C ∞

b satisfies ‖ fl − f̃l‖H1 → 0. Moreover, since (∂i fl) and ( f ∂i
l ) represent the same

element in L2 we have (by independence of the representative)

∂i f̃k = lim
l
(ϕk ∗∂i fl) = lim

l
(ϕk ∗ f ∂i

l ) = f̃ ∂i k (28)

However, again by the Proposition above, ( f̃ ∂i l) is Cauchy in H1 and satisfies ‖ f ∂i
l − f̃ ∂i l‖H1 → 0. But

this means that

‖ f̃l− f̃k‖H2 ' ‖ f̃l− f̃k‖L2 +∑
i
‖∂i f̃l−∂i f̃k‖Ḣ1 = ‖ f̃l− f̃k‖L2 +∑

i
‖ f̃ ∂i l− f̃ ∂i k‖Ḣ1 → 0 (29)

So ( f̃l)⊂ C ∞
b is Cauchy in H2. Now let f̂l := f̃l χk be as in Exercise 35, then ( f̂l)⊂S is a representative

for F , which satisfies ‖ f̂l− f̃l‖H2 → 0 ( as can be shown analogously as for Exercise 35). Thus F has a
representative in H2, which concludes the proof (finally)!!! In particular, we have found

Corollary 1. Let s≥ 1. Whenever F ∈ Hs has a representative ( fl) ⊂S which is Cauchy in Hs such
that [(∂i fl)]Hs−1 ∈ Hs−1 has a representative which is Cauchy in Hs, then F ∈ Hs has a representative
which is Cauchy in Hs+1.

The above procedure may be applied inductively. Indeed, the following is true:

Corollary 2 (Regularity for vectorial elliptic Operators). Let D be a vectorial elliptic operator and
assume that F ∈ (L2)d satisfies

DφF = φG (30)

for some G ∈ (Hn)d , where n ∈N. Then F ∈ (Hn+1)d . In particular, if n > d
2 +1, then we may consider,

by means of Exercise 24, F as an element F ∈ (C 2
b )

d and G ∈ (Hn)d as an element G ∈ (C 1
b )

d so that

DF = G (31)

Proof. Applying Theorem 3 yields a representative ( fl) for F which is Cauchy in (H1)d . Fix 1≤ i≤ d
and consider the equation

(DφF )i = φGi (32)

Taking the gradient of the above equation again yields a vectorial elliptic equation in ∇φF . Now repeat
the procedure. The remaining statement is simply an application of Exercise 24.


