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A B S T R AC T

I can illustrate the second approach with the same image of a nut to be opened. The first
analogy which came to my mind is of immersing the nut in some softening liquid, and why
not simply water? From time to time you rub so the liquid penetrates better, and otherwise
you let time pass. The shell becomes more flexible through weeks and months – when the
time is ripe, hand pressure is enough, the shell opens like a perfectly ripened avocado!

A different image came to me a few weeks ago. The unknown thing to be known appeared to
me as some stretch of earth or hard marl, resisting penetration. . . the sea advances insensibly
in silence, nothing seems to happen, nothing moves, the water is so far off you hardly hear
it. . . yet it finally surrounds the resistant substance.

(Alexander Grothendieck, Récoltes et semailles, 1985–1987, pp. 552-3-1 The Rising Sea)

In that spirit, our goal is to soften the nut of sheaf theoretical methods in complex analysis, that is, we
want to derive Oka’s First Coherence Theorem so that at the very end all we got is a perfectly ripened
avocado, ready to be spread upon our bread for breakfast. We try to be as detailed as possible in our
presentation. The content of this document basically amounts to a summary of what is written in more
sophisticated papers/books such as [1], [2] and [3]. With that being said, we will follow the presentation
of [1] quite closely. However, at times it was tried to give more details so as to make the contained
information more accessible to someone who has never seen sheaf theory before. The main struggle
with the theory at hand is mostly one of digesting the abundance of definitions that will be thrown at the
reader quite violently at times. However, we hope that the sea advances insensibly in silence and then, all
of a sudden, it will have already surrounded the resistant lack of understanding, ready to wash it away.
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1 L O C A L W E I E R S T R A S S T H E O RY

Watson. Come at once if convenient. If inconvenient, come all the same.

(Sherlock Holmes - Arthur Conan Doyle, The Adventure of the Creeping Man)

1.1 Weierstrass Division Theorem

We first introduce the notion of germs of holomorphic functions in several variables. This is rather simple
and analogous to the one-variable case. We denote by O0 = C{z1, ...,zd} the C-algebra of convergent
power series around 0 ∈ Cd . In other words,

C{z1, ...,zd} :=
{

f = ∑
µ∈Nd

aµ zµ

∣∣∣∣ f converges on some polydisc centered around 0
}

(1)

where aµ ∈ C and zµ is a shorthand notation for ∏z
µ j
j . Furthermore, we will make use of the convention

O ′0 = C{z1, ...,zd−1} as we will give some special importance to the variable zd in this section. We will
usually write w instead of zd . We may then consider both O ′0 and the polynomial ring O ′0[w] as sub-rings
of O0. For r ∈ O ′0[w] the degree of r in the variable w is denoted by deg(r). Note that if f ∈ O0 is
such that f (0) 6= 0, then f is a unit in O0. In particular, whenever g = g0 + ...+ gbwb ∈ O ′0[w] such
that gb(0) 6= 0 we know that the leading coefficient gb of the polynomial g ∈O ′0[w] is a unit in O ′0 and
therefore the euclidean algorithm holds for g, that is, to every polynomial f ∈O ′0[w] there are uniquely
determined q,r ∈ O ′0[w] such that f = qg+ r with deg(r) < b. The goal is to generalize this division
theorem to convergent power series in w. In order to do so we must first introduce the notion of an order.

Definition 1. We say that a germ f ∈ O0 has order b ∈N in the variable w, if

f =
∞

∑
ν=0

fν wν f0(0) = ... = fb−1(0) = 0 fb(0) 6= 0

Now we can state the famous:

Theorem 1 (Weierstrass Division Theorem). If g ∈ O0 has order b in w, then for every germ f ∈ O0
there exist a uniquely determined germ q ∈ O0 and a polynomial r ∈ O ′0[w] such that

f = qg+ r deg(r) < b

In order to prove this Theorem some preparation is needed. First, let

f = ∑aµ1...µd zµ1
1 ...zµd−1

d−1 wµd (2)

be a formal power series with complex coefficients and let ρ := (r1, ...,rd) be a d-tuple of positive real
numbers. We use the notation:

‖ f‖ρ := ∑ |aµ1...µd |r
µ1
1 ...rµd−1

d−1 rµd Bρ :=
{

f : ‖ f‖ρ < ∞
}

(3)

One can then prove, quite analogously to how we proved the single variable case in the lecture, that:

Lemma 1. The space Bρ is a Banach-algebra.

Now each element f ∈ Bp can be written as a power series in w (as we have already noted earlier):

f =
∞

∑
0

fν wν ‖ f‖ρ =
∞

∑
0
‖ fν‖ρ ′r

ν
d with ρ

′ := (r1, ...,rd−1) (4)

Using this notation we define for a given integer b≥ 0:

f̂ :=
b−1

∑
0

fν wν f̃ :=
∞

∑
b

fν wν−b (5)



L O C A L W E I E R S T R A S S T H E O RY 3

Thus f̂ is a polynomial in w of degree < b and by construction f = f̂ +wb f̃ . Moreover, we always have

‖ f̂‖ρ ≤ ‖ f‖ρ ‖ f̃‖ρ ≤ r−b
d ‖ f‖ρ (6)

That was all the preparation we needed:

Proof of Theorem 1. Let 0 < ε < 1 be fixed. We first choose ρ such that g ∈ Bρ . Then, by using the
notation from before, we must have that g̃ is a unit in O0 (since g̃(0) 6= 0). We may assume without loss
of generality that g̃−1 ∈ Bp and we can furthermore arrange that

‖wb−gg̃−1‖ρ ≤ rb
dε . (7)

Now let f ∈ O0. Yet again we may assume that f ∈ Bρ . We now define elements v j ∈ Bρ recursively as
follows:

v0 := f v j+1 := (wb−gg̃−1)ṽ j = −ĝg̃−1ṽ j (8)

Since we have ‖ṽ j‖ρ ≤ r−b
d ‖v j‖ρ we conclude that ‖v j+1‖ρ ≤ ε‖v j‖ρ . Thus, since Bρ is a Banach space,

v := ∑
∞
0 v j ∈ Bρ exists. We then note that

v j− v j+1 = (v̂ j +wbṽ j)− (−ĝg̃−1ṽ j) = v̂ j +(wb + ĝg̃−1)ṽ j = v̂ j + gg̃−1ṽ j (9)

Putting q := g̃−1ṽ ∈ Bρ ,r := v̂ ∈ Bρ , we immediately obtain:

f =
∞

∑
0
(v j− v j+1) =

∞

∑
0
(gg̃−1ṽ j + v̂ j) = qg+ r (10)

where r is a polynomial of degree < b. It remains to prove uniqueness of q and r. For this it suffices to
show that qg+ r = 0 with q ∈O0,r ∈ O ′0[w] and deg(r)< b implies q = r = 0. Again we may assume
q,g,r ∈Bρ for some suitable ρ . Since gb(0) 6= 0 we may arrange g−1

b ∈Bρ and write g = gb(wb+h) with
h∈ Bρ and h(0) = 0. Again we may choose ρ such that ‖h‖ρ ≤ rb

dε . We observe that qgbwb+r =−qgbh
and deg(r) < b and therefore we infer:

M := ‖qgb‖ρ rb
d = ‖qgbwb‖ρ ≤ ‖qgbwb + r‖ρ = ‖qgbh‖ρ ≤ ‖qgb‖rb

dε = Mε (11)

As ε was strictly between 0 and 1 we must have that M = 0, that is, qgb = 0. As gb is a unit we conclude
that q = 0.

This theorem has tremendous impact and gives rise to a chain of nice consequences.

Corollary 1. If g ∈ O0 is a germ of order b in w, then the Weierstrass Division Theorem gives rise to an
O ′0-module epimorphism O0�O ′b0 with kernel O0g. This map will be referred to as the Weierstrass map.

Proof. For f ∈ O0 we know by Theorem 1 that there is a uniquely determined germ q ∈ O0 and a
uniquely determined polynomial r ∈ O ′0[w] so that f = qg+ r and deg(r) < b. Now the polynomial r
can be written as

r =
b−1

∑
ν=0

rν wν

for coefficients rν ∈ O ′0. The map

O0→ O ′b0 f 7→ (r0, ...,rb−1)

is the desired epimorphism.

One of the most important consequences of the Weierstrass Division Theorem is the (also very famous)
Weierstrass Preparation Theorem. Luckily this second theorem follows quite easily from the first one.

Definition 2. A Weierstrass polynomial ω in w of degree b≥ 1 over O ′0 is a polynomial of the form

ω = wb + a1wb−1 + ...+ ab ∈ O ′0[w] a1(0) = ... = ab(0) = 0
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Lemma 2. Suppose ω ∈O ′0[w] is a Weierstrass polynomial and q ∈O0 is a germ such that qω ∈O ′0[w],
then q ∈ O ′0[w].

Proof. Setting f := qω we clearly see that qω is the Weierstrass decomposition of f with respect to
ω ∈O0. However, by assumption f ∈O ′0[w] and thus by the euclidean algorithm we also have f = q̃ω +r
with q̃,r ∈ O ′0[w] and therefore by uniqueness q = q̃.

Theorem 2 (Weierstrass Preparation Theorem). If g ∈O0 is a germ of order b≥ 1 in w, then there exists
a uniquely determined Weierstrass polynomial ω ∈O ′0[w] of degree b and a unit e ∈O0 such that g = eω .
In particular, if g ∈ O ′0[w] then e ∈ O ′0[w].

Proof. By the Weierstrass division theorem we may write the monomial wb as

wb = qg+ r deg(r) < b

However, this immediately yields wb = q(0,w)g(0,w)+ r(0,w). From that we may infer r(0,w) = 0
and q(0,0) 6= 0. In particular, this means that q is a unit in O0. Now if we define e := 1/q ∈ O0 and
ω := wb− r, then g = eω . Lastly, if g ∈ O ′0[w] then e ∈ O ′0[w] by lemma 2.

Just like the Weierstrass Division Theorem induced a map, so does the Weierstrass Preparation
Theorem:

Corollary 2. Let g ∈ O0 be a germ of order b≥ 1 and write g = eω (by means of Theorem 2). There is
a C-ring isomorphism O ′0[w]/O ′0[w]ω

'−→ O0/O0g. Moreover, the Weierstrass polynomial ω is prime
in O ′0[w] if and only if it is prime in O0.

Proof. Note that the residue classes f +O0g ∈ O0/O0g boil down to f +O0g = f +O0ω since e ∈ O0
is a unit. Moreover, for f ∈ O0 we have by the Division Theorem 1 that f = qg+ r for q ∈ O0 and
r ∈ O ′0[w] with deg(r) < b. Using this we immediately see

O ′0[w]/O ′0[w]ω =
{

f +O ′0[w]ω | f ∈ O ′0[w], deg( f ) < b
}

(12)

'
{

f +O0ω | f ∈ O ′0[w] ⊂O0, deg( f ) < b
}
= O0/O0g (13)

Now recall that an ideal P of some ring R is prime if and only if the quotient ring R/P is an integral
domain. Since we have the isomorphism O ′0[w]/O ′0[w]ω

'−→O0/O0ω , we know that O ′0[w]/O ′0[w]ω
is an integral domain if and only if O0/O0ω is an integral domain.

From the preceding results one may also verify that:

Corollary 3. The ring O0 is both noetherian and factorial.

Our next goal is to further refine the Division Theorem 1, since this will be vital for some of the later
stages. In order to do so we will first need a Lemma:

Lemma 3 (Hensel’s Lemma). Suppose ω = wb + a1wb−1 + ...+ ab ∈ O ′0[w]. Next write ω(0,w) =
∏(w−c j)b j for distinct roots c1, ...,ct ∈C and b1, ...,bt ∈N. Then there exist unique monic polynomials
ω1, ...,ωt ∈ O ′0[w] of degree b1, ...,bt such that

ω = ∏ω j ωl(0,w) = (w− cl)
bl for all 1≤ l ≤ t

Proof. We will only sketch the proof. We verify the statement by induction on t. For t = 1 the
statement trivially holds, so assume t > 1. Applying the Preparation Theorem to ω ∈ O ′0[w− c1]
we get ω = ω1e for ω1,e ∈ O ′0[w− c1] with deg(ω1) = b1 (where ω1 is a Weierstrass polynomial
and e is a unit). Now one can deduce that e is a monic polynomial in w of degree b2 + ...+ bt with

e(0,w) =
t

∏
j=2

(w− c j)b j . By induction hypothesis e =
t

∏
j=2

ω j with monic polynomials ω j ∈ O ′0[w] of

degree b j such that ω j(0,w) = (w− c j)b j .
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Before stating the generalization of Theorem 1 we must agree on some notational conventions. Let
ω ∈ O ′0[w] be a monic polynomial of degree b≥ 1 and let c1, ...,ct ∈ C denote the distinct roots of the
polynomial ω(0,w)∈C[w]. Set x j := (0,c j)∈Cd+1 and denote by Ox j the ring of germs of holomorphic
functions at x j. If p is a polynomial O ′0[w], then let px j ∈ Ox j denote the induced germ at each point x j

for 1≤ j ≤ t.

Theorem 3 (Generalized Division Theorem). Let ω ∈ O ′0[w] and c j ∈ C be as above. Given arbitrary
germs f j ∈ Ox j there exist uniquely determined germs q j ∈ Ox j and a uniquely determined polynomial
r ∈ O0[w] with deg(r) < b such that for all 1≤ j ≤ t we have

f j = q jωx j + rx j (14)

Proof. By Hensel’s Lemma 3 we know that there are monic polynomials ω1, ...,ωt ∈O0[w] so that for
all 1≤ j ≤ t we have

ωx j = ∏
s

ωsx j ω j(0,w) = (w− c j)
b j

We first prove existence of the decomposition (14): Put ei := ∏ j 6=i ω j. Of course, since ei(x j) 6= 0 we
have by Theorem 1 that

f je−1
jx j

= q′jω jx j + r jx j

with q′j ∈ Ox j ,r j ∈ O0[w− c j] and deg(r j) < b j. Now put ei j := ∏
s 6=i, j

ωs and note that

f j = q′jω jx j e jx j + r jx j e jx j =

(
q′j−∑

i6= j
rix j ei jx j

)
+∑rix j eix j (15)

Since by construction q := q′j− ∑
i6= j

rix j ei jx j ∈ Ox j and r := ∑riei ∈ O0[w] and deg(r) < b, the existence

statement of (14) follows. Now we verify uniqueness: So suppose 0 = q jωx j + rx j with q j ∈ Ox j and
r ∈ O0[w] with deg(r) < b. Suppose r 6= 0, then p j := r/(ω1...ω j) 6= 0 and for 2≤ j ≤ t we obtain

r = p1ω1 p j−1 = p jω j r = ptω (16)

As we thus we have rxt =−qtωxt = ptxt ωxt and therefore by uniqueness of the Weierstrass decomposition
pt = −qt and in particular since rx j = −q jωx j = p jx j (ω1...ω j)x j we have, again by uniqueness, p jx j =
−q j(ω j+1...ωt)x j for every j < t. However, note that ω jx j ∈ O0[w− c j] is a Weierstrass polynomial and
therefore by Lemma 2 (applied iteratively) combined with equation (16) we obtain p1, ..., pt ∈ O0[w].
Thus r = ptω ∈ O0[w]ω , which yields uniqueness.

We may phrase the preceding Theorem in even more abstract and elegant terms:

Corollary 4. Let ω ∈ O ′0[w] be a monic polynomial as given in the Generalized Division Theorem 3.
Define the maps

π : O0[w] −→
t⊕

j=1

Ox j /Ox j ωx j p 7→∑
(

px j +Ox j ωx j

)
(17)

ψ : Ob
0 −→

t⊕
j=1

Ox j /Ox j ωx j (r0, ...,rb−1) 7→ π
( b−1

∑
ν=0

rν wν
)

(18)

Then ψ is an O0-module isomorphism and π gives rise to a C-algebra isomorphism O0[w]/O0[w]ω
∼−→

t⊕
j=1

Ox j /Ox j ωx j .
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2 S H E A F T H E O RY

My mind," he said, "rebels at stagnation. Give me problems, give me work, give me the most
abstruse cryptogram or the most intricate analysis, and I am in my own proper atmosphere. I
can dispense then with artificial stimulants. But I abhor the dull routine of existence. I crave
for mental exaltation. That is why I have chosen my own particular profession, or rather
created it, for I am the only one in the world.

(Sherlock Holmes - Arthur Conan Doyle, The Sign of Four)

2.1 Presheaves, Sheaves and Étale Spaces

Sheaf theory concerns itself with tracking down locally defined data attached to open subsets of a
topological space. In other words, sheaf theory is a tool specifically designed to deal with questions of
locality.

Definition 3 (Presheaf). Let X be a topological space and let t be the category of open subsets of X with
inclusion maps as morphisms. Let C be an arbitrary category and associate to each object U ∈ t an object
S(U) ∈ C . Moreover, to each inclusion t 3 iUV : V ↪→U associate a morphism (called a restriction map)
C 3%U

V := S(iUV ) : S(U)→ S(V ),s 7→ s �V such that

%U
U= idS(U) %V

W ◦ %U
V =%U

W

whenever t 3W ⊂ V . The family S =
{

S(U),%U
V
}

is called a presheaf of the category C on X . Put
differently, a presheaf is just a contravariant functor of the category t into the category C . If we are given
yet another presheaf S′ =

{
S′(U), (%′)U

V
}

then a presheaf map is just a natural transformation ϕ : S′→ S.
In other words, a presheaf map ϕ : S′→ S is a family {ϕU} ⊂ C of morphisms ϕU : S′(U)→ S(U) such
that ϕV ◦ (%′)U

V =%U
V ◦ϕU whenever V ⊂U . Certainly, presheaves on X together with presheaf maps as

morphisms form a category.

Definition 4 (Sheaf). A presheaf S =
{

S(U),%U
V
}

of the category C on X is called a sheaf (of the
category C on X) if Serre’s condition is satisfied, that is, given an open set U ∈ t and an open partition
{Uα} of U and elements sα ∈ S(Uα ) such that

sα �Uα∩Uβ
= sβ �Uα∩Uβ

(19)

for all α ,β then there exists exactly one element s ∈ S(U) such that s �Uα
= sα for all α .

In what is to come we will usually consider (pre)sheaves of the category of sets, abelian groups or
rings etc. In that spirit we will just refer to these as (pre)sheaves of sets/abelian groups/rings on X .

Definition 5 (Étale Space). Let X be a topological space. A pair (S ,ζ ) is called an Étale space over
X if S is a topological space and ζ : S → X is a local homeomorphism. The fiber Sx := ζ−1{x} for
x ∈ X is referred to as the stalk of S at x. Continuous maps

s : U ⊂
open

X →S s 7→ sx

with ζ ◦ s = idU are called sections in S over X and the value sx is called the germ of s at x. Sometimes
we will simply write S instead of (S ,ζ ). An Étale morphism f is a map f : (S ,ζ )→ (S ′,ζ ′) such
that ζ = ζ ′ ◦ f . Of course, Étale spaces together with Étale morphisms yield a category. Étale spaces
may also be endowed with algebraic structure. For example the Étale space S is called an Étale space of
abelian groups, if for all x ∈ X the stalks Sx are abelian groups such that the maps

S ×X S :=
⋃
x∈X

Sx×Sx→S Sx 3 (sx, tx) 7→ sx− tx (20)

X →S x 7→ 0x (21)
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are continuous (where 0x ∈Sx denotes the neutral element). For such an Étale space of abelian groups,
an Étale homomorphism is defined to be an Étale morphism which respects the underlying algebraic
structure (the given map is a group homomorphism on every stalk). Analogously, Étale spaces of abelian
groups form a category with morphisms being Étale homomorphisms. More generally, an Étale space
of the category C is just an Étale space such that all stalks are objects of C and if the objects in C
are endowed with some algebraic structure then the respective algebraic operations are assumed to be
continuous and Étale homomorphisms are Étale morphisms respecting the given structure.

From the definition of an Étale space S we can immediately deduce some simple consequences:

• If U ⊂ X is open, then SU := ζ−1(U) ⊂S gives rise to a sub-Étale space.

• Every element s ∈Sx is in the image of some section: Since ζ is a local homeomorphism there
exists an open neighborhood T ⊂S of s such that ζ �T is a homeomorphism onto its image. We
certainly have (ζ �T )−1 ∈S (ζ (T )) and clearly s is in the range of this map.

• Every Étale space determines a sheaf of sets: Indeed, let S (U) denote the set of all sections
s : U →S and define %U

V to be the restriction map s 7→ s �V . Then, of course,
{
S (U),%U

V
}

is a
sheaf of sets and we will refer to this particular sheaf by the sheaf of sections in S .

• The open sets of S , which are projected homeomorphically onto open subsets of X by ζ , form a
base for the open sets of S : Let S⊂S be open and pick s ∈ S. Now by assumption there exists an
open set T ⊂S which contains s and such that the restricted map ζ �T is a homeomorphism onto
its image. But then s ∈ S∩T ⊂ S is open and ζ �S∩T also yields a homeomorphism onto its image.

• The subspace topology on Sx is the discrete topology: By the preceding bullet point a basis for the
topology on Sx is given by open sets T which are homeomorphically projected onto open subsets
of X by ζ intersected with Sx. However, in that case the restricted map ζ �T∩Sx : T ∩Sx→{x}
is bijective and therefore T ∩Sx is just a single point.

• Let U be an open neighborhood of x ∈ X and take s, t ∈S (U) (= sections on U). Then sx =
tx if and only if there exists a neighborhood V of x such that s �V= t �V : Since ζ is a local
homeomorphism there has to exist an open neighborhood T ⊂S such that sx ∈ T and ζ �T is a
homeomorphism onto its image. We can then consider the open set T̃ := s−1(T )∩ t−1(T ). By
definition of what it means to be a section we have ζ ◦ s �T̃= idT̃ = ζ ◦ t �T̃ and thus since ζ

restricted to T is a homeomorphism, we get s �T̃= t �T̃ .

• If S is an Étale space of abelian groups (or rings etc.), then f ±g ∈S (U) is well defined for all
f ,g ∈S (U).

• For two Étale spaces (S ,ζ ) and (S ′,ζ ′) over X the fiber product

S ×X S ′ :=
{
(s,s′) ∈S ×S ′ | ζ (s) = ζ

′(s′)
}
=
⋃
x
(Sx×S ′

x ) (22)

together with the map S ×X S ′→ X , (s,s′) 7→ ζ (s) is an Étale space.

A natural question to ask is whether or not a presheaf induces an Étale space. Answering this question
is not all that difficult (the answer is yes as the next proposition will show). However, the follow-up
question of whether one can recover the original (pre)sheaf after one has turned it into an Étale space is
by far more involved and is quite technical and tedious. Surprisingly enough, it actually turns out that
Serre’s condition is essential and that one can actually verify that Étale spaces and sheaves are essentially
the same (from a categorical point of view).

Proposition 1. Every presheaf S gives rise to an Étale space S and a presheaf map S→
{
S (U),%U

V
}

.
In particular, the presheaf map S→

{
S (U),%U

V
}

is an isomorphism if and only if S is a sheaf.
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Proof. Consider the disjoint union Ux :=
⊔

S(U) where the union is taken over all open sets U ⊂ X
which contain x. We then define the stalk Sx at x to be the direct limit lim−→S(U). We will unwrap now
swiftly what is meant by taking the direct limit. Let U ,V be open subsets of X containing x and take
s ∈ S(U) and t ∈ S(V ). We say that s and t are equivalent in Ux if there exists an open neighborhood
W ⊂ X of x such that W ⊂U ∩V and s �W= t �W (s and t are eventually the same, loosely speaking).
Claim: This defines an equivalence relation ∼ on Ux:
The relation ∼ is certainly reflexive and symmetric. So let s ∈ S(U), t ∈ S(V ) and u ∈ S(W ) such that
s∼ t and t ∼ u. By assumption there exist open neighborhoods W1 ⊂U ∩V and W2 ⊂V ∩W of x such
that s �W1= t �W1 and t �W2= u �W2 . Set X :=W1∩W2, then we obtain

s �X=%U
X s =%W1

X %U
W1

s =%W1
X %V

W1
t =%V

X t =%W2
X %V

W2
t =%W2

X %W
W2

u = u �X

and therefore s∼ u which proves the claim.

Now just define
Sx := Ux/∼

which exactly recovers the meaning of the direct limit from before. The next step is to collect all these
stalks to obtain our, still topologically naked, Étale space

S :=
⊔
x∈X

Sx

which of course is endowed with a natural projection ζ : S → X . This yields natural maps %U
x : S(U)→

Sx mapping each element s ∈ S(U) onto its equivalence class %U
x (s) ∈Sx (for x ∈U). Each s ∈ S(U)

now induces a map s : U →S given by x 7→%U
x (s). If t is again the category of open sets in X , then

the family of sets {s(U) |U ∈ t,s ∈ S(U)} gives rise to a topology on S such that ζ : S → X is a
local homeomorphism. Therefore (S ,ζ ) is an Étale space. The maps s are sections in S and therefore
we may define ϕU : S(U)→ S (U) by s 7→ s. In order to show that ϕ = {ϕU} defines a sheaf map
S→{S (U),%U

V } we have to verify that the diagram

S(U) S(V )

S (U) S (V )

ϕU

S(iUV )

ϕV

%U
V

commutes, where t 3 iUV : V ↪→U . However, for arbitrary s ∈ S(U) and x ∈V we obtain

ϕV ◦S(iUV )(s)(x) = s �V (x) =%V
x (s �V )

s∼s�V= %U
x (s) =%U

V ◦ϕU (s)(x) (23)

Assume now that S is a sheaf and fix an open set U ∈ t. We first verify injectivity of ϕU . The equation
ϕU (s) = ϕU (t) for s, t ∈ S(U) is equivalent to the statement that for all x ∈ U there exists an open
neighborhood Wx ⊂U of x such that s �Wx= t �Wx . The family {Wx} gives rise to an open covering of
U and thus by Serre’s condition s = t. For surjectivity let f ∈S (U) be arbitrary. By construction of
S for every x ∈U there exists an open neighborhood Ux ⊂U of x and an element sx ∈ S(Ux) such
that %Ux

x sx = f (x). Now as ζ is a local homeomorphism there exists an open neighborhood Vx ⊂Ux

of x such that ζ �Ṽx
is a homeomorphism onto its image, where Ṽx := ζ−1(Vx). By setting sx := sx �Vx

we may assume without loss of generality that sx ∈ S(Vx). Since ζ (%Vx
y sx) = y for all y ∈ Vx we have

(ζ �Ṽx
)−1 =

(
Vx→S ,y 7→%Vx

y sx
)
∈S (Vx). In particular, for all y ∈Vx we have

f (y) = f (ζ (%Vx
y sx)) =%Vx

y sx

Furthermore note that for z ∈Vx∩Vy we have

ϕVx∩Vy(%
Vx
Vx∩Vy

sx)(z) =%Vx
z sx = f (z) =%

Vy
z sy = ϕVx∩Vy(%

Vy
Vx∩Vy

sy)(z)
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and therefore by injectivity of ϕVx∩Vy we have %Vx
Vx∩Vy

sx =%
Vy
Vx∩Vy

sy. Since {Vx} is also a cover of U
Serre’s condition yields a unique element s ∈ S(U) such that s �Vx= sx for all x ∈U . At long last we can
then deduce that for all x ∈U we have

f (x) =%Vx
x sx = s(x)

This shows that ϕU is indeed an isomorphism. Conversely, suppose all {ϕU} are isomorphisms. If U ∈ t
has an open partition {Uα} with sα ∈ S(Uα ) such that sα �Uα∩Uβ

= sβ �Uα∩Uβ
then let fα := ϕUα

(sα ) ∈
S (Uα ). It is easily verified that f :=

⋃
fα yields a well defined map U→S and in particular f ∈S (U).

As ϕU is an isomorphism we may then define s := ϕ
−1
U ( f ) ∈ S(U). By using the fact that ϕ is a natural

transformation we infer

s �Uα
= S(iUUα

)(ϕ−1
U ( f )) = ϕ

−1
Uα

(%U
Uα

( f )) = ϕ
−1
Uα

( fα ) = sα

showing that Serre’s condition holds for S.

This was, admittedly, extremely tedious. However, the above result is valuable both for the content
of its statement and the information contained in the proof, as we will see very soon (I promise). Let
us denote by ΓS the sheaf of sections induced by the Étale space S and denote by Γ̌S the Étale space
induced by the sheaf S. Let us prove another smaller lemma before reaping the fruits of our hard work:

Lemma 4. For an Étale space S we have a canonical isomorphism S → Γ̌ΓS . Moreover, every Étale
morphism S ′→S resp. sheaf map S′→ S induces a sheaf map ΓS ′→ ΓS resp. Étale morphism
Γ̌S′→ Γ̌S.

Proof. For the first part of the lemma consider the map S → ΓΓ̌S which takes an element s ∈Sx and
maps it onto the equivalence class in (ΓΓ̌S )x of some section f ∈ Γ̌S (U) = S (U) with f (x) = s.
In other words, consider S → ΓΓ̌S given by s 7→%U

x f where f ∈ S (U) such that f (x) = s. This
is well defined, for if g ∈S (U) is another section with g(x) = s we know that f �V= g �V for some
open neighborhood V ⊂U of x. However, this already implies %U

x f =%U
x g. This map is easily seen

to be bijective, which proves the first part of the lemma. Suppose now that f : S ′ →S is an Étale
morphism. Define the family Γ( f ) = {Γ( f )U} of maps Γ( f )U : ΓS ′(U)→ ΓS (U) by s′ 7→ f ◦s′. Write
ΓS = {ΓS (U),%U

V } and ΓS ′ = {ΓS ′(U),λU
V } for the induced sheaves. Clearly for s′ ∈ ΓS ′(U) we

have

%U
V ◦Γ( f )U (s′) =%U

V ( f ◦ s′) = f ◦ s′ �V= f ◦ (s′ �V ) = Γ( f )V ◦λ
U
V (s′) (24)

so Γ( f ) is a sheaf map. Conversely, suppose ϕ ′ : S′ → S is a sheaf map and S = {S(U),%U
V } and

S′ = {S′(U),λU
V }. We will now define a map Γ̌(ϕ ′) : Γ̌(S′)→ Γ̌(S). For sx ∈ Γ̌(S′)x there must exist

some open neighborhood U ⊂ X of x along with s∈ S′(U) such that λU
x s = sx. Set Γ̌( f )(sx) :=%U

x ϕ ′U (s).
This is well defined. Indeed, if t ∈ S′(U) is another element such that λU

x t = sx then by definition of the
given equivalence relation there must exist an open neighborhood W ⊂U of x such that λU

W (s) = λU
W (t).

Using the defining properties of a sheaf map one arrives at

%U
W ◦ϕ ′U (s) = ϕ

′
W ◦λ

U
W (s) = ϕ

′
W ◦λ

U
W (t) =%U

W ◦ϕ ′U (t) (25)

Thus Γ̌(ϕ ′) is well defined and it is then clear by the given construction that ζ ◦ Γ̌(ϕ ′) = ζ ′ (where ζ

resp. ζ ′ is the projection onto Γ̌S resp. Γ̌S′).

We now collect all these facts together. By proposition 1 we have a canonical sheaf isomorphism
S→ ΓΓ̌S. Analogously, by lemma 4 we have a canonical Étale space isomorphism S → Γ̌ΓS . In
particular, again by lemma 4 we therefore obtain that Γ and Γ̌ define functors

Γ : Étale spaces Sheaves Γ̌ : Sheaves Étale spaces (26)

Now by what we have seen there are natural isomorphisms of the (functor) compostions ΓΓ̌ and Γ̌Γ
with the identity. Hence the categories of sheaves of sets and Étale spaces over X are equivalent. Recall
also that both (pre)sheaves and Étale spaces may come endowed with some algebraic structure. The
construction of proposition 1 applied to a (pre)sheaf with algebraic structure will give rise to an Étale
space with the same algebraic structure. Combining all this leads to:
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Theorem 4 (Equivalence Principle). The category of Étale spaces of groups (rings etc.) over X is
equivalent to the category of sheaves of groups (rings etc.) over X.

The preceding theorem tells us that we need not distinguish between an Étale space and its sheaf of
sections. Therefore we will sometimes call Étale spaces sheaves and vice versa. Before proceeding even
further into sheaf theory it is due time to give some examples of actual sheaves. Throughout, F could
either be the complex number field C or the real number field R (unless we explicitly say otherwise).

Examples 1. 1. Let X be a topological space and let F be a field endowed with the discrete topology.
The canonical projection ζ : FX := X×F→ X turns FX into a sheaf of fields. This is referred to
as a constant sheaf.

2. Let X := R and define S(U) := Z for all open subsets U ⊂ X and %U
V = 0 for all V ⊂U open. Then

S = {S(U),%U
V } defines a presheaf on X . However, if S denotes the induced Étale space then we

note that all stalks Sx consist only of the zero element. Therefore, the sheaf of sections obtained
from the Étale space S satisfies S (U) = 0 6= S(U) for all open U ⊂ X .

3. Let X be a topological space and define C (U) to be the set of continuous functions X → F and
let %U

V simply be the restriction maps. Now C = {C (U),%U
V } certainly gives rise to a sheaf. The

induced Étale space CX is called the sheaf of germs of continuous functions over X . The Étale
space CX is an Étale space of commutative rings. However, note that CX is not Hausdorff in
general: Take X = R with the standard topology and let f0 denote the germ of continuous functions
which are identically 0 in a small neighborhood of 0 ∈R. Now consider the continuous function
g(x) = e−1/x whenever x > 0 and g(x) = 0 for all x≤ 0. The function g also defines a germ g0 at
0 which is different from f0. Any couple of open neighborhoods Tf ,Tg ⊂ CX of f0,g0 must have
non-empty intersection since g(x) = 0 for all x < 0.

4. For an open subset X of Rd let C ∞(U) denote the set of infinitely differentiable functions U → F

and let %U
V denote the usual restriction maps. This again yields a sheaf and the Étale space of

commutative rings C ∞
X thus generated is called the sheaf of germs of smooth functions. Just as in

the preceding example, by using the same counterexample, we infer that C ∞
X is not Hausdorff. The

set X need not be an open subset of Rd : We could also let X be an arbitrary smooth manifold.

5. Let M be a smooth (abstract) manifold and let ξ : M→ T M be a vector field (where T M is the
tanget bundle of M). Now recall that for every smooth function f ∈ C ∞(M,R) we can consider
the smooth function ξ ( f ) : M→ R given by ξ ( f )(x) := ξ (x)( f ) (recall that ξ (x) ∈ TxM is a
derivation at x on the space of differentiable functions C ∞(M,R)). Now for an open set U of M
we may consider the (partial) differential equation ξ ( f ) = 0 for f ∈ C ∞(M,R) and we then let
S(U) be the vector space of all those smooth functions f on U such that ξ ( f ) = 0. Again we just
choose the standard restriction maps %U

V and thus obtain a sheaf {S(U),%U
V }.

6. For a domain D⊂ Cd let O(U) denote the set of holomorphic functions U → C and let %U
V denote

the usual restriction maps. This is again a sheaf and the induced Étale space OD is called the sheaf
of germs of holomorphic functions over D. Certainly OD is a sheaf of commutative rings.

Lemma 5. For each domain D in Cd the sheaf of germs of holomorphic functions OD is Hausdorff.

Proof. Let fx,gy ∈ OD be two different germs. For x 6= y the statement is clear. For x = y pick two
holomorphic functions f ,g ∈ O(B) with %B

x f = fx and %B
x g = gx, where B ⊂ D is some open disk

centered at x. Now we recall that f and g both induce sections f ,g ∈OD(B). If we had f (B)∩g(B) 6= /0,
then there would exist z ∈U such that %B

z f = f (z) = g(z) =%B
z g. But this is equivalent to there existing

an open neighborhood W ⊂ B of z such that f �W= g �W . By the classical Identitätssatz we thus have
f = g, since D is connected. However, this would also imply fx = gx, a contradiction. Therefore,
f (B)∩g(B) = /0 and both these sets are open neighborhoods of fx resp. gx.
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2.2 A -modules and Image Sheaves

Definition 6 (A -modules). Let A be a sheaf of rings on some topological space X and suppose S is a
sheaf of abelian groups on X . The sheaf S is called an A -module or A -sheaf, if each stalk Sx is an
Ax-module such that the map A ×X S →S , defined on each stalk by (ax,sx) 7→ axsx, is continuous. As
one might have guessed, A -morphisms are those sheaf maps ϕ : S ′→S which induce Ax-linear stalk
maps ϕx := ϕ �S ′x : S ′

x →Sx (Note that we have made use of the Equivalence principle 4 in order to
translate this back into the sheaf setting). In that sense A -modules form a category. For every A -module
S on X we define the support of the sheaf S to be the set

suppS :=
{

x ∈ X |Sx 6= 0
}

(27)

As is common for such algebraic constructions, one might ask for A -submodules or ideals and so
on. We have a natural notion of A -submodules, sums of A -submodules, finite intersections of A -
submodules of S and so on (all of this is just given stalkwise for each x).Moreover, if we are given
an A -submodule I of A itself, then we call I an ideal in A . We call I that way, because for an
A -module S , we may simply define the product I ·S stalkwise by Ix ·Sx and this certainly yields an
A -submodule of S . In particular, for a submodule S ′ of S one may consider the set

S /S ′ :=
⋃

Sx/S ′
x (28)

and endow this with the quotient topology. This means that we define the finest possible topology on
S /S ′ such that the quotient map π : S →S /S ′ is continuous. The pair (S /S ′,ζπ ), where we
defined ζπ (sx +S ′

x ) := x stalkwise for all sx ∈Sx, is an Étale space and in particular this defines an
A -module (this yields the notion of a quotient A -module).

Definition 7. Suppose ϕ : S →S ′ is an A -morphism. We define

kerϕ :=
⋃
x∈X

kerϕx (29)

imϕ :=
⋃
x∈X

imϕx (30)

to be the kernel respectively image of ϕ . The cokernel of ϕ is the quotient sheaf

Cokerϕ := T /imϕ (31)

A sequence of A -morphisms S
ϕ−→S ′ ψ−→S ′′ is called exact, if kerψ = imϕ . Every A -morphism

ϕ : S →T induces two exact A -sequences

0→ kerϕ →S → imϕ → 0 0→ imϕ →T → Cokerϕ → 0 (32)

The direct sum S
⊕

T :=S ×X T of A -modules with stalks (S
⊕

T )x :=Sx
⊕

Tx is an A -module.
In particular we may define the A -sheaves S p :=

⊕
1≤ j≤p

S . We also have the notion of a tensor product.

Indeed, if S = {S (U),%U
V } and {T (U),λU

V } are A -modules, then we may define

S ⊗A T =
{
S (U)⊗A (U) T (U),%U

V ⊗A (V )λ
U
V
}

(33)

and this of course induces canonical isomorphisms (S ⊗A T )x
'−→Sx⊗Ax Tx.

If we have a continuous map f : X → Y along with a sheaf of abelian groups S on X , then one might
ask if we can use f so as to construct a new sheaf of groups on Y .

Definition 8 (Image sheaf). Let f : X → Y be a continuous map and let S be a sheaf of abelian groups
on X . If f (X)∩V = /0, then put S ( f−1(V )) := 0. The family{

S ( f−1(V )),%V
W
}

W ⊂
open

V ⊂
open

Y %V
W= canonical restriction (34)

gives rise to a sheaf of abelian groups on Y , which we will denote by f∗(S ) and we will refer to it as the
f -image sheaf of S . Quite evidently, its support is given by

supp f∗(S ) = f (suppS ) (35)
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By the preceding definition we have seen that from a continuous map f : X → Y we may generate
another sheaf of abelian groups on Y denoted by f∗(S ) (assuming S is a sheaf of abelian groups on X).
What about morphisms between abelian groups on X? Let ϕ : S →S ′ be a morphisms between two
sheaves of abelian groups. Recall that this is a family

{
ϕU |U ⊂

open
X
}

such that the diagram

S (U) S (V )

S ′(U) S ′(V )

ϕU

S(iUV )

ϕV

S′(iUV )

commutes for all V ⊂U open in X . We now define the family f∗(ϕ) =
{

ϕ f−1(V ) |V ⊂open
Y
}

. Since ϕ

is a morphism of sheaves, we must also have that f∗(ϕ) is a morphism of sheaves f∗(S )→ f∗(S ′).

Recall that the composition of two sheaf morphisms S
ϕ→S ′ ϕ ′→S ′′ is given by

ϕ
′ ◦ϕ =

{
ϕ
′
U ◦ϕU |U ⊂

open
X
}

(36)

Thus it immediately follows that f∗(ϕ ′◦ϕ) = f∗(ϕ ′)◦ f∗(ϕ). In particular, if 1S is the identity morphism
on the sheaf S , then f∗(1S ) = 1 f∗(S ). We summarize all of this more abstractly:

Proposition 2. Let f : X → Y be a continuous map, then f induces a functor

f∗ :
{

(Pre-)Sheaves on X
}
 
{

(Pre-)Sheaves on Y
}

(37)

One may verify without too much effort that:

Lemma 6. Every exact sequence

0−→S
ϕ−→S ′ ψ−→S ′′ −→ 0 (38)

induces an exact sequence

0−→ f∗(S )
f∗(ϕ)−→ f∗(S ′)

f∗(ψ)−→ f∗(S ′′) (39)

In other words, f∗ is left exact.

2.3 C-ringed Spaces

Definition 9 (Ringed Spaces). A tuple (X ,AX ) consisting of a topological space X and a sheaf of rings
A = AX on X is called a ringed space. We refer to AX as the structure sheaf of X . Sometimes we will
simply write X instead of (X ,AX ) and we write |X | for the underlying topological space.

For example, the sheaf of continuous functions CX yields a ringed space (X ,CX ).

Let f : X → Y be a continuous map. We now try to motivate the at first rather unintuitive notion
of a morphism between ringed spaces. In order to do so we consider the ringed spaces CX and CY . Fix
some open subset V ⊂ Y , then f induces a C-algebra lifting homomorphism

f #
V : CY (V ) −→ f∗(CX )(V ) = CX ( f−1(V )) g 7→ g◦ f (40)

where, strictly speaking, f needs to be restricted to f−1(V ). We immediately infer that this map commutes
with restrictions. This motivates:

Definition 10. A morphism ( f , f #) : (X ,AX )→ (Y ,AY ) between ringed spaces consists of a continuous
map f : X → Y and a sheaf map f # : AY → f∗(AX ). To spell it out more concretely, f # is a family of
ring homomorphisms { f #

V |V open in Y} such that
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AY (V ) f∗(AX )(V )

AY (W ) f∗(AX )(W )

f #
V

AY (iVW ) AX

(
i f−1(V )

f−1(W )

)

f #
W

commutes for all open subsets W ⊂ V ⊂ Y , where we denoted by AY (iVW ) : AY (V )→ AY (W ) and

AX
(
i f−1(V )

f−1(W )

)
: AX ( f−1(V ))→AX ( f−1(W )) the restrictions on the sheaves AY resp. AX .

Now one might ask how to compose two such morphisms (X ,AX )
( f , f #)−→ (Y ,AY )

(g,g#)−→ (Z,AZ). How-
ever, there is only one sensible definition:

(g,g#) ◦ ( f , f #) := (g◦ f ,g∗( f #) ◦g#) : (X ,AX ) −→ (Z,AZ) (41)

By means of Proposition 2 one immediately infers that this is an associative, binary operation. The unit
element is clearly given by (1X ,1AX ). Therefore, the collection of ringed spaces forms a category.

Definition 11 (Locally ringed spaces). We call a ringed space (X ,A ) a locally ringed space, if every
stalk Ax is a local ring (i.e. it has a unique maximal ideal M(Ax)).

Definition 12 (C-ringed Spaces). Let K := X×C be the constant sheaf of fields on X and let (X ,A ) be
a ringed space. If A is a K-module, then we call A a sheaf of C-algebras. Whenever K is a submodule
of A , then 1x ∈ Kx = C · 1x is the unit of Ax. If that is the case and if, moreover, (X ,A ) is a locally
ringed space with unique maximal ideals M(Ax) so that Ax = C ·1x

⊕
M(Ax) as C-vector spaces, then

we call A a sheaf of local C-algebras. Now certainly in that case suppA = |X |. Finally, a ringed space
(X ,A ) is called a C-ringed space, if the structure sheaf A is a sheaf of local C-algebras.

As C-ringed spaces have much more richness in their constitution as ringed spaces, morphisms between
C-ringed spaces must respect the added structure. Recall that if S,R are local rings with unique maximal
ideals MS and MR, then a local homomorphism ϕ : S→ R is a homomorphism such that ϕ(MS) ⊂MR.
Recall that by Lemma 4 every sheaf map induces an Étale map and vice versa. A morphism of locally
ringed spaces ( f , f #) : (X ,AX ) −→ (Y ,AY ) is a morphism of ringed spaces such that for all x ∈ X the
induced ring map AY , f (x) −→AX ,x is a local homomorphism. Finally, a morphism of C-ringed spaces
( f , f #) : (X ,AX )−→ (Y ,AY ) is a morphism of locally ringed spaces such that f # : AY −→ f∗(AX ) also
defines a C-algebra lifting homomorphism, i.e. a family

{
f #
V : AY (V ) −→AX ( f−1(V )) |V open in Y

}
of C-algebra homomorphisms. Certainly enough, both the collection of locally ringed spaces and of
C-ringed spaces define categories.

Lemma 7. Let (X ,AX ), (Y ,AY ) be locally ringed spaces. If ( f , f #) : (X ,AX )−→ (Y ,AY ) is an isomor-
phism of ringed spaces, then ( f , f #) is an isomorphism of locally ringed spaces.

Proof. This follows immediately by recalling the fact: If S,R are local rings, then any isomorphism of
rings S→ R is a local ring homomorphism.

Examples 2. 1. The sheaf of continuous functions CX is a C-ringed space: Indeed, it is clear that
(X ,CX ) is a ringed space and that CX is a sheaf of C-algebras. Now consider the ring epimorphism

Ex : CX ,x −→ F fx 7→ f (x) (42)

where f is a representative of the germ fx. Note that this is certainly well defined. The kernel of
this map consists exactly of those germs fx with f (x) = 0 (for a representative f of fx). As the
above map is an epimorphism, the isomorphism theorem readily yields

CX ,x
/

ker(Ex) ' F (43)

So the ideal ker(Ex) = { fx ∈ CX ,x | f (x) = 0} is maximal. Moreover, this ideal is the unique
maximal ideal in CX ,x, since every germ fx such that f (x) 6= 0 has a multiplicative inverse.
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2. The sheaf of germs of holomorphic functions OD, domain D⊂ Cd , is a C-ringed space.

Lemma 8. Every morphism ( f , f #) : (X ,AX )→ (Y ,AY ) between C-ringed spaces induces stalk maps
f #
y : AY ,y→ f∗(AX )y which completely determine f #. These stalk maps are C-algebra homomorphisms.

Proof. The first statement was shown in Lemma 4. Since all stalks AY ,y, f∗(AX )y are C-algebras and all
f #
V : AY (V )→AX ( f−1(V )) are C-algebra homomorphisms, the map f #

y is a C-algebra homomorphism
for all y ∈ Y .

Examples 3. 1. The pair ( f , f #) : (X ,CX )→ (Y ,CY ) is a morphism between C-ringed spaces.

2. Let X ,Y be domains in Cn,Cm. Pick holomorphic functions f1, ..., fm ∈ O(X) such that f : X →
Cm,z 7→ ( f1(z), ..., fm(z)) maps X onto Y . The lifting f #

V : CY (V ) → CX ( f−1(X)) induces a
C-algebra homomorphism f #

V : OY (V )→ f∗(OX )(V ). Now certainly the map

( f , f #) : (X ,OX )→ (Y ,OY ) (44)

is a morphism of C-ringed spaces.

3. If (X ,AX ) is a C-ringed space and if U is an open subset in X , then (U ,AU ) is a C-ringed space.
The inclusion i : U ↪→ X induces a C-algebra lifting homomorphism i# : AX → i∗(AU ) (this is the
identity on U , the zero map outside U). The space (U ,AU ) together with the inclusion morphism
(i, i#) is called an open C-ringed subspace of (X ,AX ).

Remark 1. Let ( f , f #) : (X ,AX )→ (Y ,AY ) be a morphism between ringed spaces and let S be an AX -
module. The sheaf f∗(S ) is an f∗(AX )-sheaf and hence, by means of f # : AY → f∗(AX ), an AY -module.
Moreover, AX -morphisms ϕ : S →T give rise to AY -morphisms f∗(ϕ) : f∗(S )→ f∗(T ), so that f∗
turns out to be a covariant functor of the category of AX -modules into the category of AY -modules.

2.4 Complex Model Spaces and Complex Spaces

We take a quick look at the even more general notions of Complex Spaces, even though we won’t really
get into too many details here.

Definition 13. Let D⊂ Cd be a domain and take finitely many holomorphic functions f1, ..., fk ∈ O(D)
and form their ideal sheaf I := ID := OD f1 + ...+OD fk ⊂OD. The quotient sheaf OD/ID is a sheaf
of rings on D. We now put

X := supp(OD/ID) OX := (OD/ID)|X (45)

Quite evidently X is the set of common zeros of the holomorphic functions f1, ..., fk, that is, X =
N( f1, ..., fk) = {x ∈ D | f1(x) = ... = fk(x) = 0}. One can show that (X ,OX ) is a C-ringed space. This
C-ringed space is called the complex model space defined by I (in D). We write V ( f1, ..., fk) or simply
V (I ) for this space.

Now the definition of a complex space is as follows:

Definition 14 (Complex Spaces). A C-ringed space (X ,OX ) is called a complex space, if X is a Hausdorff
space and if every point of X has an open neighborhood U such that the open C-ringed subspace (U ,OU )
of (X ,OX ) is isomorphic to a complex model space.

Therefore, locally speaking, complex spaces are determined by finitely many holomorphic functions
defined in domains of number spaces. In a complex space (X ,OX ) every open subset U ⊂ X defines an
open complex subspace (U ,OU ). Complex spaces form a full subcategory of the category of C-ringed
spaces. Morphisms (isomorphisms) between such spaces are called holomorphic (biholomorphic) maps;
OX modules on a complex space (X ,OX ) are called analytic sheaves on X .
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“Do you wish me a good morning, or mean that it is a good morning whether I want it or
not; or that you feel good this morning; or that it is a morning to be good on?”

(Gandalf - J.R.R. Tolkien, The Hobbit, or There and Back Again)

3.1 Finite and relationally finite Sheaves

As Remmert puts it, Coherence is, in a vague sense, a principle of analytic continuation from a point
to a neighborhood. We now try to build up to the definition of Coherence. Whenever we have a space
endowed with some algebraic structure, there is almost always the concept of a basis (e.g. for vector
spaces). We also want to have something of this sort for A -modules S , where (X ,A ) is a ringed space
(we will always assume A to be a sheaf of unital rings). If p≥ 1 is some integer, then A p is also an
A -module and therefore A p(X) is an A (X)-module. By definition A (X) is a unital ring, so there
exists a unit section 1 ∈A (X). The map

A (X) −→Ax s 7→ s(x) (46)

is a unital ring homomorphism for all x ∈ X and therefore 1(x) = 1x ∈Ax is the unit element in Ax for
all x ∈ X . Now for 1≤ i≤ p we define the elements

ei := (0, ...,1, ...,0) ∈A p(X) (47)

where 0 ∈A (X) is just the section which maps x onto the zero element 0x ∈Ax for all x ∈ X . From the
construction above it is clear that the Étale map

A p→A p A p
x 3 (a1x, ...,apx) 7→∑aixeix ∈A p

x (48)

is an isomorphism (it is actually just the identity). The elements e1, ...,ep ∈A (X) are the canonical basis
of A p(X). An A -map ψ : A p −→S , where S is an A -module, is completely determined by its p
values si := ψ(ei). Conversely, if we are given a sequence of sections s1, ...,sp ∈S (X), then this defines
an A -map

ψ : A p −→S (a1x, ...,apx) 7→
p

∑
1

aixsix (49)

The sections si are said to generate Sx resp. S , if ψ(A p)x = SX resp. ψ(A p) = S .

Definition 15 (Finite A -modules). Let (X ,A ) be a ringed space. An A -module S is said to be (locally)
finite over A if for every x ∈ X there exists an open neighborhood U of x such that SU is generated by
finitely many sections of S (U).

Examples 4. All the sheaves A p for 1 ≤ p < ∞ are finite. All quotient sheaves of finite sheaves are
finite.

Proposition 3. If S is a finite A -sheaf, then

supp(S ) =
{

x ∈ X |Sx 6= 0
}

(50)

Proof. Let x ∈ X be such that Sx = 0. Choose an open neighborhood U of x and sections s1, ...,sp ∈
S (U) which generate SU . Since si(x) = 0 for all i, we may make U smaller such that si = 0 on U for
all i. But then U ⊂ X\

{
y ∈ X |Sy 6= 0

}
.

Proposition 4. Let S be a A -module. The following is true:

1. If S is finite and S ′ ϕ→S
ψ→S ′′ is an A -sequence, then

{
x ∈ X | imϕx = Sx

}
and

{
x ∈ X |

ψx = 0
}

are open in X.
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2. If S is finite and s1, ...,sp ∈S (V ) generate the stalk Sx for some x ∈ X, then x has an open
neighborhood U ⊂V such that the maps si �U generate SU .

3. Suppose S1,S2 are submodules of S . If S1 is finite, the set
{

x ∈ X |S1x ⊂S2x
}

is open in X.
If S2 is finite too, the set {x ∈ X |S1x = S2x

}
is open in X.

Proof. Applying Proposition 3 to S /imϕ resp. S /kerψ immediately yields the first claim. Now for
the second statement define ϕ : A p→S by (a1x, ...,apx) 7→ ∑

p
1 aixsi(x). By the first statement we have

that
{

x ∈ X | imϕx = Sx
}

is open, which is exactly the content of 2). The last statement follows upon
noting that

{
x ∈ X |S1x ⊂S2x

}
= X\

[
suppS1/(S1∩S2)

]
.

Definition 16. An A -sheaf S is called relationally finite if for every open set U in X and every AU -
homomorphism A p

U →S the kernel is finite on U . Phrased differently, if for every set s1, ...,sp ∈S (U)
the sheaf of relations

R(s1, ...,sp) :=
⋃

x∈U

{
(a1x, ...,apx) ∈A p

x :
p

∑
1

aixsi(x) = 0
}

(51)

is finite on U .

It is evident from the definition that subsheaves of relationally finite sheaves are relationally finite.
However, it is not true in general that quotient sheaves of relationally finite sheaves are relationally finite.

Lemma 9. If S ′ is a finite submodule of a relationally finite module S , then the quotient module
S /S ′ is relationally finite.

Proof. Fix some open subset U of X and let s̃1, ..., s̃p ∈S /S ′(U). We have to show that the sheaf of
relations

RS /S ′(s̃1, ..., s̃p) =
⋃

x∈U

{
(a1x, ...,apx) ∈A p

x :
p

∑
1

aixs̃i(x) = 0
}

(52)

is finite on U . Let x ∈U . For every 1 ≤ i ≤ p we have s̃i(x) ∈Sx/S ′
x and therefore we may write

s̃i(x) = si(x)+S ′
x where si is some section on S . If π : S →S /S ′ is the quotient map, then we

must also have that the map π ◦ si is a section on S /S ′ which agrees with s̃i in the point x. Thus there
exists an open neighborhood V ⊂U of x such that π ◦ si = s̃i on V . Now since S is relationally finite we
know that

RS (s1, ...,sp) =
⋃
y∈V

{
(a1y, ...,apy) ∈A p

x :
p

∑
1

aiysi(x) = 0
}

(53)

is finite. Thus there exists an open neighborhood W ⊂V of x and sections t1, ..., tl ∈RS (s1, ...,sp)(W )
which generate RS (s1, ...,sp)W . Using finiteness of S ′ we may assume without loss of generality that
there are sections s′1, ...,s′k ∈S ′(W ) which generate S ′

W . Note that the map

ψ
′ : A p

W −→S ′
W (a1y, ...,aky) 7→

k

∑
1

aiys′i(y) (54)

is an isomorphism of sheaves. Taking an element (a1y, ...,apy) ∈RS /S ′(s̃1, ..., s̃p) we observe that

0 = ∑aiys̃i(y) = ∑aiysi(y)+S ′
y ⇐⇒ ∑aiysi(y) ∈S ′

y (55)

As S is relationally finite, all tuples (a1y, ...,apy) ∈ A p
y , which satisfy ∑aiysi(y) = 0, are finitely

generated. Moreover, by finiteness of S ′ all tuples (a1y, ...,apy) ∈A p
y such that ∑

p
1 aiysi(y) ∈Sy\0 are

finitely generated (this follows from the isomorphism ψ ′). Thus we conclude that S /S ′ is relationally
finite.
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3.2 Coherent Sheaves

Definition 17. An A -module S is called coherent, or more precisely, A -coherent, if S is finite and
relationally finite. The property of coherence is local in character, thus it makes sense to call a sheaf
coherent at x ∈ X if SU is coherent for an open neighborhood U of x.

Proposition 5. Suppose S and T are coherent A -sheaves. Then every Ax-map ϕx : Sx→Tx extends
into a neighborhood U of x to an AU -map ϕ : SU →TU .

Proof. For small enough U there are morphisms ψ : A p
U →SU and χ : A p

U →TU such that ψ(A p
U ) =

SU and χx = ϕx ◦ψx (by finiteness of S and T ). By construction we then certainly have kerψx ⊂ kerχx.
By item 3) of Proposition 4 we have, since the relation sheaf R(ψ(e1), ...,ψ(ep)) = kerψ (where the ei

are the canonical basis for A p) is finite by assumption, that kerψ ⊂ kerχ for a sufficiently small U . Now
we identify SU = A p

U /kerψ and notice that the unique AU -map ϕ : SU →TU such that

A p
U A p

U /kerψ = SU

TU

χ

π

ϕ

commutes, agrees with ϕx on the stalk Sx.

Remark 2. It follows straightaway that every finite subsheaf of a coherent sheaf is coherent. In particular,
if S ′,S ′′ are coherent subsheaves of a coherent sheaf S and if I is a finite ideal, then the sheaves
S ′+S ′′ and I ·S are coherent.

A most useful theorem is the following:

Theorem 5 (Three Lemma - Serre’s Theorem). Let 0→S ′→S →S ′′→ 0 be an exact sequence of
A -sheaves. Then S ′,S ,S ′′ are all coherent if any two of them are coherent.

Proof. Noguchi page 70, Theorem 3.3.1

There are a bunch of immediate corollaries of this Theorem:

Corollary 5. The direct sum of finitely many coherent sheaves is coherent.

Proof. The canonical A -sequence 0−→S −→S ⊕T −→T −→ 0 is exact.

Corollary 6. Let ϕ : S → T be an A -homomorphism between coherent sheaves. Then the sheaves
kerϕ , imϕ and Cokerϕ are all coherent.

Corollary 7. Let S ′ ϕ→S
ψ→S ′′ be a sequence of coherent sheaves. Then the set of points x ∈ X such

that S ′
x →Sx→S ′′

x is exact is open in X. In particular, coherent sheaves are locally isomorphic if they
are stalkwise isomorphic.

Proof. Since kerψ and imϕ are coherent by the preceding corollary, the set
{

x ∈ X | imϕx = kerψx
}

is
open in X by item 3) in Proposition 4. The last claim follows by an application of Proposition 5.

We have already seen that every coherent A -sheaf is, locally, the cokernel of an A -morphism
A q→A p. By the Three Lemma we also have that the converse holds:

Corollary 8. Let A be coherent. Then an A -sheaf S is coherent, if locally there exists an exact
A -sequence A q→A p→S → 0.

Corollary 9. Let A be coherent and let I be a finite ideal. Then an A /I -sheaf S on X is A /I -
coherent if and only if S is A -coherent. In particular, A /I is a coherent sheaf of rings.
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3.3 Extension Principle

Let Y denote a closed subspace of X and let i : Y ↪→ X be the inclusion. For every sheaf T of groups in
Y the image sheaf i∗T is a sheaf of groups on X characterized by i∗T |Y = T and i∗T |X\Y = 0. The
sheaf i∗T is called the trivial extension of T to X . If B is a sheaf of rings on Y and T is a B-module,
then i∗B is a sheaf of rings on X and i∗T is a i∗B-module. It is now straightforward to see that the
following is valid:

Theorem 6 (Extension Principle). A B-sheaf T on Y is B-coherent if and only if i∗T is i∗B-coherent
on X.

This is the simplest possible form of this principle of extension. If one wants to develop the theory
more generally, a refinement of this theorem is needed for C-ringed spaces (X ,AX ). Every ideal I ⊂AX

gvies rise to the C-ringed space (Y ,AY ) where Y := N(I ) and AY := (AX /I )|Y . Certainly AX /I is
the trivial extension of AY . Thus the trivial extension i∗T of every AY -module T is an AX /I -module.
Applying Theorem 6 and Corollary 9 yields:

Theorem 7. Let AX be coherent and suppose I ⊂ AX is a finite ideal. Then an AY -module T is
AY -coherent if and only if the trivial extension i∗T is AX -coherent.

Finally the most general form of the extension principle concerns Coherent Analytic Sheaves:

Theorem 8 (Extension Principle for Coherent Analytic Sheaves). Let (Y ,OY ) be a closed complex
subspace of a complex space (X ,OX ). Then an analytic sheaf T on Y is OY -coherent if and only if the
trivial extension i∗T of T to X is OX -coherent.

4 O K A’ S F I R S T C O H E R E N C E T H E O R E M

We start this section by stating the most general version of Oka’s first Coherence Theorem:

Theorem 9 (Theorem of Oka). The structure sheaf OX of every complex space X is coherent.

One may infer from the general version of the Extension Principle that Oka’s Theorem follows if we
only showed that OCd is coherent. In order to prove that OCd is coherent we need enough cannon fodder:

Definition 18 (Weierstrass Projections). Consider the monic polynomial

ω(z,w) := wb + a1(z)wb−1 + ...+ ab(z) ∈ O(D)[w] (56)

where D⊂ Cd is a domain and 1≤ b < ∞. The attached space (W ,OW ) in D×C is called a Weierstrass
model space. The projection D×C→ D induces the Weierstrass projection ψ : (W ,OW )→ (D,OD).

Every Weierstrass projection ψ : W → D induces an OD-homomorphism ψ̊ : Ob
D → ψ∗(OW ): For

U ⊂ D, and s = (s0, ...,sb−1) ∈ Ob
D(U), the polynomial ∑sβ wβ−1 ∈ Ob

D(U)[w] induces a section in
(O/ωO)(U×C) and therefore, by restriction to W , a section s̊∈ (O/ωO)(U×C)|W =OW (ψ−1(U)) =
ψ∗(OW )(U). The map Ob

D(U)→ ψ∗(OW )(U),s 7→ s̊ is an OD(U)-module homomorphism. As these
maps are compatible with restrictions they give an OD-homomorphism ψ̊ : Ob

D→ ψ∗(OW ). One can
actually show that this homomorphism is an OD-module isomorphism. The crucial ingredient now is:

Lemma 10 (Coherence Lemma). Let ψ : (W ,OW )→ (D,OD) be a Weierstrass projection, and assume
that the sheaf OD is coherent. Then the sheaf OW is coherent too, and for every coherent OW -sheaf S
the image sheaf ψ∗(S ) is OD-coherent.

We will also need:

Lemma 11 (Formal Criterion for Coherence). Let A be a Hausdorff sheaf of rings on a topological
space X such that all stalks Ax are integral domains. Then A is coherent if the following condition is
fulfilled:
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• For any open subset U ⊂ X and any section s ∈ A (U), the sheaf of rings AU /sAU on U is
coherent at every point x ∈U where sx 6= 0.

Theorem 10 (Oka). OCd is coherent.

Proof. We prove the statement by induction. The case d = 0 is clear. We only need to verify the formal
criterion for coherence now. Let U ⊂ Cd be open and let s ∈ O(U) and x ∈U such that the germ at x
induced by s is not 0, i.e. sx 6= 0. Without loss of generality we may assume that x = 0 and s(x) = 0.
We can choose coordinates (z,w) ∈ Cd−1×C such that s(0,w) 6= 0. By the Preparation Theorem there
is a neighborhood D of 0 ∈ Cd−1 and a Weierstrass polynomial ω = ω(z,w) ∈ O(D)[w] such that
sxOx = ωxOx. Now we consider the Weierstrass model space (W ,OW ) induced by the Weierstrass
polynomial ω and its Weierstrass projection (W ,OW )→ (D,OD). Since OD is coherent by induction
hypothesis, the sheaf OW is coherent by the Coherence Lemma 10. Now by the Extension principle
8 its trivial extension i∗OW = OD×C/ωOD×C is a coherent sheaf of rings. Since OD×C/ωOD×C and
OU /sOU coincide around x, the sheaf OU /sOU is indeed coherent.
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