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1 A bedtime Story
The quality of a physical theory depends on how well its predictions align with experi-
mental results. In terms of this measure of ’goodness,’ quantum field theory is widely
regarded as the most successful theory in physics. However, Quantum Field Theory
has been quite elusive when it comes to its underlying mathematical description. The
definition for a QFT one usually finds in a textbook on the matter is given in terms of
the Feynman path integral. The path integral, in essence, is a framework that allows for
integrating over the entire space of possible physical field configurations, such as the
different ways an electromagnetic field can vary throughout space and time. It provides
a way to calculate quantities in quantum field theory by summing contributions from all
possible histories or states of the system, weighted by an exponential factor involving
the action. This concept, however, is fundamentally ill-defined, as it can be shown
that the path integral, with all the desired properties physicists attribute to it, cannot
rigorously exist in general.

Despite this, physicists approach quantum field theory by cleverly approximating this
nonexistent path integral. Remarkably, these approximations yield predictions that align
with experimental results to an unprecedented degree of accuracy. Despite the tremen-
dous success of QFT, from a mathematical perspective, one might expect a rigorous
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framework that defines the path integral properly. To this end, two main approaches to
axiomatizing QFT have been developed: algebraic quantum field theory and functorial
field theory.

In this talk (or in these notes), we will focus exclusively on functorial field theory.
There is a funny story1 with regards to the origin of functorial quantum field theory,
which goes as follows. During a lecture on Conformal Field Theory (a special case of
QFT), Witten presented a set of axioms that the Feynman path integral should satisfy.
After Witten’s presentation, Segal, who was in the audience, casually remarked:

Is that not just a symmetric monoidal functor from some category of cobordisms to the
category of vector spaces?

This remark was reportedly quite amusing to an audience predominantly composed of
physicists as Segal appeared to have taken these straightforward axioms and reframed
them in a manner that was, at the time, perceived as either incomprehensible or intimi-
dating. Conceived from this very idea, functorial quantum field theory has become a
very active area of research, driving the development of numerous groundbreaking new
mathematics (among them e.g. the theory of (∞, n)-categories). Notably, it stands as a
cornerstone in the intersection of mathematics and physics, playing a significant role in
modern mathematical physics.

2 A Cooking manual on smooth QFT
Let us discuss what a quantum field theory (QFT) should be, framed in the most
conceptual terms possible. Physics aims to describe phenomena occurring in spacetime,
which constitutes the framework of our observable universe. We will not delve into
what this means precisely, but, very crudely speaking, a Quantum Field Theory Q ought
to assign values to patches of spacetime. With regards to that, it seems plausible that a
QFT should be a morphism of theories:{

Geometric Theory of Spacetime
} {

Algebraic Theory of Values
}

Q

where the left hand domain should be thought of as containing information about our
observable universe i.e. spacetime patches (think e.g. of smooth manifolds), while the
right hand codomain should be thought of as a theory of algebraic entities (think e.g. of
Hilbert spaces or chain complexes). What we really mean by theory is a category. And
in fact, when we say morphism of theories we must therefore mean that a QFT is some
sort of functor between categories.

• Daunting Ingredients, Delightful Outcome

1. As sketched above, a QFT should be a functor between some geometric
category of spacetime to some algebraic category. A good question would

1This story originates from Dmitri Pavlov, who shared it at the beginning of one of his talks on the
Geometric Cobordism Hypothesis. See Lecture series on the Geometric Cobordism Hypothesis Video #1.

https://carqueville.net/nils/GCH.html
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now be: Why would that be a functor? Physical theories are thought to
satisfy something that might be referred to as being local. By that we mean
that if we can calculate the values of our QFT locally on some patches
of spacetime, then we can glue the values together to obtain the value of
the whole spacetime. But this locality condition will precisely correspond
to functoriality of our assignment! More precisely, given a spacetime of
dimension d, we may smoothly cut this up into as many finite smooth sub-
pieces and we would expect that if we applied our QFT Q to the composition
of patches of spacetime, then the result would be the same as evaluating our
QFT on the whole spacetime. We have the catchphrase: All global effects
arise by integrating up local effects. This makes it obvious that since we
want to cut up our given d-dimensional spacetimes in all possible d-many
directions, and since glueing of spacetime patches should be considered as
the right composition operation in this geometric category of spacetimes,
that we cannot use just ordinary categories to encode something like this. In
fact, we shall consider (∞, d)-categories of spacetimes as well as algebraic
(∞, d)-categories of values and a QFT should then be a functor Q between
such (∞, d)-categories.

2. In Quantum Field Theory we have the notion of Quantum entanglement
and superposition. These phenomena fundamentally arise from the non-
cartesianness of the tensor product of e.g. Hilbert spaces (which are used in
the formulation of QM). In category theory there is a natural generalization
of the tensor product. We realize therefore that both the (∞, d)-category
of spacetimes and the one of values ought to be symmetric monoidal (both
categories have a tensor product functor) and a QFT Q must then be a
symmetric monoidal functor (a functor compatible with the tensor functor)
between these entities.

3. The notion of duality (think of dual vector spaces) is omnipresent in any
quantum theory (think e.g. of Dirac’s Bra-ket notation). Any ordinary
symmetric monoidal category allows for the notion of duals for its objects
(if they exist). In fact, if we are given a symmetric monoidal (∞, d)-category
then we may also ask for duals of duals (higher duals). Asking a symmetric
monoidal (∞, d)-category to have all higher duals (meaning every object
is fully dualizable) leads to the concept of a symmetric monoidal, dualic
(∞, d)-category. It is observed that our given symmetric monoidal (∞, d)-
category of spacetimes will always be dualic. Moreover, any symmetric
monoidal functor preserves all duality information. Hence a QFT, for the
time being, is still just assumed to be a symmetric monoidal functor just like
in the previous step. The notion of fully dualizable objects is crucial when
we arrive at the Cobordism classification theorem.

4. Finally, our field theories ought to be smooth (as in practice they are e.g.
the assignment is smooth in the time parameter). In order to encode such
smoothness for a field theory Q, we would like to have a notion of smooth
symmetric monoidal functor. But in order for this to make sense, we need the
notion of smooth symmetric monoidal (∞, d)-categories (think of smoothly
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parametrized families of symmetric monoidal (∞, d)-categories). Thereby a
smooth QFT may be encoded as a smooth symmetric monoidal functor.

• Spacetimes and lots of Glueing

1. We shall sketch the definition of our smooth symmetric monoidal (∞, d)-
category of spacetimes. Usually this is referred to as the symmetric monoidal
(∞, d)-category of cobordisms, denoted

⨿CobG
d

where G is the given geometry2 that we want to encode on our cobordisms
(i.e. spacetimes), while ⨿ denotes the tensor product of cobordisms (disjoint
union).

2. We shall discuss a certain variant of

⨿CobG
d

namely the framed cobordism category

⨿Cobfr
d

In the Cobordism Theorem we will restrict to the case where our cobordism
category is of the framed type. Also we shall not care for smoothness in our
presentation (maybe only in the last section).

• The Cobordism Hypothesis

1. We shall discuss Lurie’s Topological Cobordism Hypothesis and, if time
allows, I will try to convince you why the result is true.

2. If time permits, I will talk on the geometric cobordism hypothesis as stated
in [1].

2.1 Higher Categories
As we said in the introduction a QFT should be a functor between some category of
spacetimes to some algebraic category of values. We will see later that the category
of spacetimes that we want to look at is not an ordinary category. In fact, it will be an
(∞, d)-category (where d depends on the dimension of our QFT). The reason for this
is that composition in our spacetime category will be something like glueing together
patches of d-dimensional spacetimes3. But since we are in d-dimensional spacetime
there is d different directions in which we can cut up our spacetimes. Moreover, glueing
of spacetimes will not result in a uniquely determined spacetime but rather in one that is
unique up to a contractible space of choices. So we shall start by postulating what an
(∞, 1)-category should be. Roughly speaking (∞, 1)-categories are smug little things

2This is the most recent definition as provided in [1].
3This can be more properly motivated by the concept of locality in physics, which may be stated informally

by saying “all global effects arise by integrating up local effects”.
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that look like ordinary categories, but have a fancy homotopy coherent air to it. An
(∞, 1)-category is an entity that has a collection of objects, a collection of 1-morphisms
between these objects, a collection of 2-morphisms between these 1-morphisms, and so
on. Furthermore, each morphism layer is assumed to be endowed with a composition
operation which is associative and unital up to coherent homotopy. In particular, the 1 in
(∞, 1) means that every k-morphism, for k ≥ 2, is invertible (up to homotopy). We can
make this a little more precise by saying that an (∞, 1)-category is a category weakly
enriched in spaces. This means that an (∞, 1)-category C has a collection of objects C0
and for each pair of objects X,Y a whole space of morphisms C (X,Y). The points of
the spaces C (X,Y) are, by definition, the 1-morphisms of C . Paths between points in
the mapping spaces C (X,Y) are the 2-morphisms, homotopies between paths are the
3-morphisms, homotopies between homotopies are the 4-morphisms and so on. Note
that paths, homotopies, homotopies of homotopies etc. are automatically invertible (with
regards to concatenation of paths, homotopies, and so on) by just reversing the direction
of the path, homotopy, etc. The whole of ordinary category theory like e.g. (co)limits,
adjunctions, Kan extensions all have analogues in the∞-world. We can now inductively
"define" (∞, d)-categories for d ≥ 2: An (∞, d)-category is a category weakly enriched
in (∞, d − 1)-categories. In other words, an (∞, d)-category is something which has a
collection of objects along with, for each pair of such objects, an (∞, d − 1)-category of
morphisms between these two objects.

Notation 2.1. From now on we will say d-category or category instead of always
saying (∞, d)-category, or (∞, 1)-category (any ordinary category may be viewed as
an (∞, 1)-category, so this is consistent). Likewise, we will say groupoid or space, but
mean∞-groupoid.

2.2 Entanglement leads to Monoidality
Certainly the idea that a QFT is just a functor (without any extra whistles and bells) is
way too naive. For example, given two physical systems we also want to make sense
of their composite i.e. regard them as a single system, but trivially so, without the two
interacting. In classical mechanics this is achieved by taking the cartesian product of
their phase spaces (the space of all those fields on spacetime which solve the equations
of motion, or in other words, the space of trajectories of the system). In QM however,
forming the composite of two physical systems amounts to taking the (non-cartesian)
tensor product of the spaces of quantum states. The non-cartesian nature of this tensor
product is the source of the phenomenon of quantum entanglement. Encoding this in the
language of category theory is achieved by passing to symmetric monoidal categories:
Recall that a symmetric monoidal category C is a category C together with a tensor
product functor

⊠ : C × C → C

along with a unit object 1 ∈ C (referred to as the tensor unit) such that we have natural
isomorphisms (natural in X,Y,Z ∈ C )

(X ⊠ Y) ⊠ Z ≃ X ⊠ (Y ⊠ Z), X ⊠ 1 ≃ X ≃ 1 ⊠ X, X ⊠ Y ≃ Y ⊠ X
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and these isomorphisms are coherent (see Symmetric Monoidal Cats NLab). Now,
in order to encode entanglement, our assignment from cobordisms to some category
of values has to preserve the symmetric monoidal structure: Recall that a symmetric
monoidal functor between symmetric monoidal categories Q : C → D is a functor from
C to D that is suitably compatible (see Monoidal Functor Nlab) with the respective
tensor functors:

Q(X ⊠C Y) ≃ QX ⊠D QY, Q(1C ) ≃ 1D

2.3 Duality
In Quantum mechanics the notion of a dual is crucial (e.g. dual vector spaces). The
notion, yet again, has a natural generalization in the world of category theory. In order to
speak about this, let us recall the notion of an adjunction internal to any given 2-category:

Definition 2.3.1. Let A be a 2-category, and suppose we are given objects X,Y ∈ A
and 1-morphisms φ : X → Y .

• The morphism φ is said to be left adjoint (or to admit a right adjoint), if there
exists a morphism φ∨ : Y → X and two 2-morphisms referred to as coevaluation
and evaluation

coevφ : idX → φ
∨ ◦ φ, evφ : φ ◦ φ∨ → idY

so that the triangle identities are satisfied

φ ◦ φ∨ ◦ φ φ∨ ◦ φ ◦ φ∨

φ φ φ∨ φ∨

φ·evφ evφ·φ∨coevφ·φ φ∨·coevφ
≃ ≃

• Analogously, φ is said to be a right adjoint (or to admit a left adjoint), if there
exists a morphism ∨φ : Y → X such that ∨φ is left adjoint to φ.

Remark 2.2. Any symmetric monoidal 1-category C may be interpreted as a 2-category
BC as follows:

• BC has precisely one (dummy) object ∗,

• 1-morphisms in BC are the objects in C ,

• 2-morphisms in BC are given by the 1-morphisms in C , and so on.

With the previous remark, we have the following definition:

Definition 2.3.3. An object X ∈ C is called dualizable if X fits into an adjunction when
viewed as a 1-morphism in BC .

https://ncatlab.org/nlab/show/symmetric+monoidal+category#definition
https://ncatlab.org/nlab/show/monoidal+functor#definition
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Remark 2.4. Note that a left adjoint of X, as above, is also right adjoint to X. This
follows from C being symmetric monoidal.

Remark 2.5. More concretely, this means that X ∈ C is dualizable, if there exists an
object X∨ ∈ C along with evaluation and coevaluation maps satsifying the triangle
identities:

X ⊠ X∨ ⊠ X X∨ ⊠ X ⊠ X∨

X X X∨ X∨

Φ⊠evX evX⊠X∨coevX⊠X X∨⊠coevX

≃ ≃

By means of the string diagramatic calculus (a category theoretic version of Feynman
diagrams), this translates to (which, as we will see, looks a lot like cobordisms):

Since we shall be in the setting of an arbitrary d-category, we also have to account
for higher dualities we want to encode.

Definition 2.3.6. Let A be any d-category A .

• We say that A admits adjoints for 1-morphisms, if every 1-morphism φ in A has
both a left and a right adjoint internally4 to the underlying5 2-category A ≤2.

• We say that A admits adjoints for k-morphisms, if for every pair of objects
X,Y ∈ A the (d − 1)-category C (X,Y) admits adjoints for (k − 1)-morphisms.

• We say that A has adjoints if A admits adjoints for k-morphisms for all 0 < k <
d.

4In the sense of Definition 2.3.1 from earlier.
5A ≤2 is obtained from A by forgetting about all non-invertible k-morphisms for all k ≥ 3.
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Having this we may define the notion of symmetric monoidal dualic d-categories.
For this note that any symmetric monoidal d-category C may always be considered as
an (∞, d + 1)-category BC analogously to the case d = 1 in 2.2.

Definition 2.3.7. A symmetric monoidal d-category is called dualic6 if the (d + 1)-
category BC admits adjoints in the sense of Definition 2.3.6

Remark 2.8. The 1-category of symmetric monoidal d-categories SymCatd admits a
full subcategory consisting of those symmetric monoidal d-categories which are dualic,
denoted by SymCat∨d . The canonical inclusion admits both a left and a right adjoint:

SymCat∨d SymCatd

Duals(−)

⊣
⊣

The important functor here is the right adjoint Duals, which comes with a universal
comparison natural transformation

Duals(incl(−))
ι
→ id

Definition 2.3.9. An object X in a given symmetric monoidal d-category is called fully
dualizable, if X is in the essential image of ιC : DualsC → C .

In more down to earth terms, an object X ∈ C is fully dualizable if

• X is dualizable, i.e. X has a dual X∨ ∈ C along with evaluation and coevaluation
maps satisfying the triangle identities as described in 2.5,

• The evaluation map evX : X∨ ⊠ X → 1 viewed as a 1-morphism in C admits
adjoints (both a left and right adjoint) in the sense of 2.3.1:

X∨ ⊠ X 1

idX∨⊠X evX ◦ ev∨X idX∨⊠X evX ◦
∨evX

ev∨X ◦ evX id1 ∨evX ◦ evX id1

evX

∨evX

ev∨X

coevevX evevX c̃oevevX ẽvevX

⊣
⊣

Likewise, the coevaluation map, coevX : 1→ X ⊠ X∨ admits adjoints.

• One carries on by demanding that the evaluations evevX , ẽvevX all admit adjoints
themselves when viewed as 1-morphisms in C (1,1) and so on for the other
structure maps.

6This is far from standard terminology, and is probably solely used by myself in these talk notes. The
standard term is symmetric monoidal d-category with duals.
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• Continue like this to the (d − 1)-morphism layer of C .

We shall highlight the necessity for this concept more clearly when we arrive at the
Cobordism hypothesis, but there is another thing that is very much worth noting.
Symmetric monoidal functors Q : C → D preserve fully dualizable objects, that
is, Q(DualsC ) ⊂ DualsD . For example, if X is dualizable, then QX is dualizable with
evaluation and coevaluation given by:

evQX B QevX : Q(X∨ ⊠C X) ≃ Q(X∨) ⊠D Q(X)→ 1D ≃ Q(1C )

and analogously coevQX B QcoevX . By monoidality this will satisfy the triangle
identities. There is one more Proposition we ought to state:

Proposition 2.3.10. Suppose we are given symmetric monoidal d-categories C ,D such
that C is dualic. Then the (symmetric monoidal) d-category of symmetric monoidal
functors from C to D

SymCat(C ,D)

is a space (that is, a groupoid).

Idea of the Proof. We have to show that every k-morphisms for 0 < k ≤ n in the above
functor category has an inverse; Let us illustrate the case k = 1. To this end, let
Q,Q′ be symmetric monoidal functors from C to D and suppose ζ : Q → Q′ is a
symmetric monoidal natural transformation between the two. It suffices to show that ζ
is a componentwise isomorphism. So let X ∈ C , then by assumption X has a dual X∨

along with evaluation and coevaluation maps. We note that QX and Q′X are dual to
Q(X∨) and Q′(X∨). In particular, we have Q(X∨)∨ ≃ QX and Q′(X∨)∨ ≃ Q′X. It is
then checked that

Q′X ≃ Q′(X∨)∨
ζ∨

X∨
→ Q(X∨)∨ ≃ QX

is the desired inverse to ζX (note here that ζ∨X∨ denotes the dual morphism of ζX∨ ). □

Example 2.3.11. Let us list some examples:

• The (ordinary) category of vector spaces over some field F, denoted VectF, is not
dualic7. An object X ∈ VectF has a dual if and only if X is finite dimensional.

• Fusion Categories may be identified as the fully dualizable objects in some 3-
category of monoidal categories with 1-morphisms bimodule categories. See
Nlab for more references.

• Let R be a commutative ring. Consider then the 2-category of R-algebras Alg2
R,

with 1-morphisms given by Bimodules, while 2-morphisms are given by Bimodule
maps (intertwiners). Composition of 1-morphisms is given by tensor product
of bimodules. One can show that fully dualizable objects in Alg2

R are separable
algebras which are projective modules over the base ring R.

7Being dualic - this is usually called being rigid in the 1-categorical case - for a symmetric monoidal
1-category is the same as saying every object has a dual.

https://ncatlab.org/nlab/show/fully+dualizable+object
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• In the category (recall our convention: we mean (∞, 1) now!) of spaces S , the
only (fully) dualizable is the point (and everything equivalent to it).

• In the (stable) category of spectra Sp, the full subcategory on finite spectra consists
of only dualizable objects. In particular, retracts of finite spectra are dualizable
(see here).

• In the 1-category of presentable stable 1-categories PrL
st the dualizable objects are

given by retracts of compactly generated, stable categories. I am not sure what the
fully dualizable objects are if we view the 2-category of presentable 1-categories -
maybe someone knows and tells me?

• The Cobordism categories that we will define later are all dualic.

2.4 Smoothness
Time propagation in Quantum mechanics should be smooth in the time parameter.
More generally, one would expect that quantum field theories are depending smoothly
(whatever that might mean we make more precise in a second) on their input. The right
notion of smoothness should be along the following lines: Recall that a QFT is expected
to be a symmetric monoidal functor between an (∞, d)-category of spacetimes (to be
introduced below) and some symmetric monoidal (∞, d)-category of values. We would
like to view both the domain and target of our QFT as some sort of generalized smooth
space in a way that this would allow us to consider smooth maps - smooth symmetric
monoidal functors - between these. How do we encode such a thing then? Sheaves of
course! Recall that the (ordinary) category of cartesian spaces, denoted by CartSp, has
as objects open subsets U ofRn (for some n ∈ N) such that U is smoothly diffeomorphic
to Rn; morphisms in CartSp are then just smooth maps. Now if any smooth manifold
M may be naturally interpreted as the sheaf (of sets) C∞(−,M) : CartSpop → Set.
Given a second manifold N, the Yoneda Lemma will imply that natural transformations
C∞(−,M)→ C∞(−,N) are precisely the same thing as smooth maps M → N.

Since we are secretly in∞-land, we do want to consider∞-sheaves instead of just
ordinary sheaves. We are now ready to define smooth categories:

Definition 2.4.1. A smooth symmetric monoidal d-category is a presheaf with values in
the 1-category of symmetric monoidal d-categories

CartSpop SymCatd

U CU

C

satisfying the (homotopy) sheaf condition: For any U ∈ CartSp and any good open
cover (Ui) of U, the canonical map

CU holim
(∏

i
CUi

∏
i, j

CUi j

∏
i, j,k

CUi jk . . .

)
∼

sending φ ∈ CU to (φ|Ui )i is an equivalence (of symmetric monoidal d-categories).

https://mathoverflow.net/questions/289520/dual-objects-in-the-infty-category-of-spectra
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The RHS of the above equivalence has as objects the collection of (homotopy
coherent) matching families (φi)i ∈

∏
i

CUi , that is, we have

φi|Ui j ≃ φ j|Ui j , φi j|Ui jk ≃ φik |Ui jk , . . .

while the LHS is given by the global elements φ ∈ CU . Saying that the canonical map is
an equivalence is (morally speaking) the same as saying that given any matching family
(φi)i, there is a unique (up to contractible choice) φ ∈ CU such that φ|Ui ≃ φi for all i.

3 Fun with Spacetimes: Cobordisms
Theorem 3.0.1 (Lurie). There is a symmetric monoidal (dualic) d-category of Cobor-
disms

⨿Cobd

which has

• objects given by 0-manifolds (i.e. disjoint unions of points),

• 1-morphisms given by 1-manifolds with boundaries (think of disjoint unions of
intervals),

• 2-morphisms are 2-manifolds with corners,
...

• d-morphisms are d-manfiolds with corners,

• (d+1)-morphisms are smooth diffeomorphisms between d-manifolds with corners
(which restrict to the identity on the respective boundaries).

• (d + 2)-morphisms are smooth isotopies between diffeomorphisms between d-
manifolds with corners.

• and so on.

The composition operation is given by glueing of manifolds (in any layer) and the tensor
product (that then determines the symmetric monoidal structure) is given by taking
disjoint unions of manifolds.

Let us make more sense of the above by considering an explicit example:

Example 3.0.1. We consider the example of ⨿Cob2:
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Remark 3.2. There is an important framed variant ⨿Cobfr
d . For this recall that a framed

m-manifold is an m-manifold M along with a trivialization of its tangent bundle. More
concretely, a framed m-manifold M is framed, if there exists a list of smooth vector
fields

(ξ1, . . . , ξn)

such that at each point x ∈ M, the list of vectors (ξi(x))i is a basis of the tangent
space TxM at x. More generally, for n ≥ m, an n-framing of the m-manifold M is a
trivialization of the stablilized tangent bundle TM ⊕Rn−m, where Rn−m is the trivial
bundle with fiber Rn−m. With all that established, the symmetric monoidal d-category of
framed Cobordisms, denoted by ⨿Cobfr

d , is defined in the same way as its variant 3.0.1,
except that we require that all manifolds be equipped with a d-framing.

Remark 3.3. More generally even, Grady & Pavlov in [1] define

⨿CobG
d

for any given geometric structure G .

4 Where is the Quantum?

4.1 Topological QFTs and the Topological Cobordism Hypothesis
With this we may then define quantum field theories:



4 WHERE IS THE QUANTUM? 16

Definition 4.1.1. Let V be some symmetric monoidal d-category. A d-dimensional
framed functorial quantum field theory with values in V is a symmetric monoidal
functor

⨿Cobfr
d

Q
→ V

The symmetric monoidal space (i.e. groupoid) (make a footnote here) of such quantum
field theories is denoted by

QFTfr
d (V ) B SymFun(⨿Cobfr

d ,V )

Lurie’s topological Cobordism Hypothesis, nowadays probably more aptly referred
to as a Theorem, is then as follows:

Theorem 4.1.1. Evaluation at a point • ∈ ⨿Cobfr
d induces an equivalence

QFTfr
d (V )→ Duals≃V

Q 7→ Q(•)

where Duals≃V denotes the maximal subgroupoid of V whose objects consist of all the
fully dualizable objects in V .

Remark 4.2. Stated differently, the framed cobordism Theorem states that ⨿Cobfr
d is

the free symmetric monoidal, dualic d-category generated from a point8.

The idea to the above equivalence is that a framed field theory ought to be already
completely determined by its value on a point. Indeed, any cobordism may be cut
up into into smaller and smaller pieces, until eventually we have a decomposition of
our cobordism in terms of (higher) duality information of the point. To illustrate this,
consider the following example of the donut (the yummiest of manifolds) and cut it
as indicated: Since a field theory (i.e. a symmetric monoidal functor) Q preserves
fully dualizable objects and moreover, Q(M ⨿ N) ≃ QM ⊠V QN, we have (since
composition is read from bottom to top):

8Note that this statement is really equivalent, even though it looks more like there is some funny truncation
business going on here. The reason for the groupoid core popping up on the RHS is that the LHS is always a
groupoid by 2.3.10.
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4.2 The Geometric Cobordism Hypothesis
To be written, or not; probably don’t have time for this in the talk anyways!
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